SET	$\mathbf{A} / \mathbf{B} / \mathbf{C}$

INDIAN SCHOOL MUSCAT
HALF YEARLY EXAMINATION 2023

Science (086)

CLASS:X

Physics

PHYSICS
Max.Marks: 80

MARKING SCHEME			
SET	QN.NO	- VALUE POINTS	MARKS SPLIT UP
	13	a	1
	14	a	1
	17	c	1
	24	Absolute Refractive Index: The refractive index is known as the absolute refractive index when light travels from a vacuum to another medium. Relative Refractive Index: The refractive index is known as the relative refractive index when light travels from one medium to another.	1 1
	25	A student has difficulty in reading the blackboard while sitting in the last row. It shows that he is unable to see distant objects clearly. He is suffering from myopia. This defect can be corrected by using a concave lens. OR Planets do not twinkle because they appear larger in size than the stars as they are relatively closer to earth. Planets can be considered as a collection of a large number of point-size sources of light. The different parts of these planets produce either brighter or dimmer effect in such a way that the average of brighter and dimmer effect is zero. Hence, the twinkling effects of the planets are nullified and they do not twinkle	$1+1$ $1+1$
	31	Ray Diagram for convex lens (i) beyond centre of curvature (ii) between focus and centre of curvature (If direction of ray is not marked deduct $1 / 2$ marks)	$\begin{aligned} & 1 / 2 \\ & 11 / 2 \end{aligned}$
	32	(a) The splitting up of white light into its constituent colours in the form of VIBGYOR is called dispersion. (b) Dispersion takes place because the speed of light of different colours through a glass or in terms of RI of material of prism (c) Ray diagram to show the dispersion of white light through prism (If extreme are not mentioned deduct $1 / 2$ mark)	1 1 1

Page 1 of 4

24	$\begin{array}{llll}\text { (i) convex } & \text { (ii) concave } & \text { (iii) concave } & \text { (iv) convex }\end{array}$	$4 x^{1 / 2}$
25	Two causes Myopia OR Blue colour has shorter wavelength so according to law scattered most due to which colour of sky is blue	$1+1$ 2
31	Ray Diagram for convex lens (i) beyond centre of curvature (ii) between focus and centre of curvature (If direction of ray is not marked deduct $1 / 2$ marks)	$\begin{aligned} & 11 / 2 \\ & 11 / 2 \end{aligned}$
32	(a) The splitting up of white light into its constituent colours in the form of VIBGYOR is called dispersion. (b) Dispersion takes place because the speed of light of different colours through a glass or in terms of RI of material of prism (c) Ray diagram to show the dispersion of white light through prism (If extreme are not mentioned deduct $1 / 2$ mark)	1 1 1
33	(a)Function of ciliary muscles It helps the eye lens to focus the image of the object on the retina by increasing or decreasing the curvature of eye lens and holds the lens in position (b) Defect of vision: Presbyopia (c) Correction: By using bifocal lenses	1 1 1
36	(i) The lens used by the palmist is a convex lens so as to form a magnified image of an object. (ii) The palmist should hold the lens at focus, or between the focus and the center of curvature of the lens so as to get the real and magnified image. (iii) $1 / f=1 / v-1 / u$ $\begin{aligned} & V=-10 m, \\ & m=v / u=-10 /-5=2 \end{aligned}$ OR (i) Reciprocal of focal length, Definition of 1 diopter (ii) Power of lens $\mathrm{A}=100 / \mathrm{f} \mathrm{A}(\mathrm{in} \mathrm{cm})=100 / 10=+10 \mathrm{D}$ convex lens Power of lens B $=100 / \mathrm{f}($ in cm $)=100 /-10=-10 \mathrm{D}$ (iii) Convex lens	$\begin{aligned} & \hline 1+1 \\ & 1 \\ & 1 \\ & 1 / 2 \\ & 1 \\ & 1 / 2 \\ & 1 / 21 / 2 \\ & 1 / 21 / 2 \\ & 1 / 21 / 2 \\ & 1 \\ & 1 \end{aligned}$
39	(i) cornea (ii) kidney, lungs (iii) retina	1 2 1

INDIAN SCHOOL MUSCAT
HALF YEARLY EXAMINATION 2023
CHEMISTRY
Science (086)
CLASS:X
Max.Marks: 80

MARKING SCHEME			
SET	QN.NO	VALUE POINTS	MARKS SPLIT UP
	1.	(b) Reducing	1
	2.	(b) i_{c}, c	1
	3.	(c)	1
	4.	(d)	1
	5.	(b)	1
	6.	(b)	1
	7.	(b)	1
	8.	Biology	
	9.	Biology	
	10.	Biology	
	11.	Biology	
	12.	Biology	
	13.	physics	
	14.	physics	
	15.	(d) Neutralization	1
	16.	Biology	
	17.	Physics	
	18.	(d)	1

19. (a)

INDIAN SCHOOL MUSCAT
HALF YEARLY EXAMINATION 2023
Science (086)
CLASS:X
Max.Marks: 80

MARKING SCHEME			
SET	QN.NO	VALUE POINTS	MARKS SPLIT UP
	1.	(b)	1
	2.	(c)	1
	3.	(b)	1
	4.	(c)	1
	5.	(a)	1
	6.	(a)	1
	7.	(d)	1
	8.	Biology	
	9.	Biology	
	10.	Biology	
	11.	Biology	
	12.	Biology	
	13.	physics	
	14.	physics	
	15.	(a)	1
	16.	Biology	
	17.	Physics	
	18.	(d)	1

Page 2 of 3

SET	C

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION 2023

Science (086)
CLASS:X
Max.Marks: 80

19.	(a)	
20.	Biology	
21.	$\mathrm{OA} \rightarrow \mathrm{CuO}$ (Copper oxide) (1) $\mathrm{RA} \rightarrow \mathrm{H}_{2}$ (Hydrogen gas)(1)	2
22.	Biology	
23.	Biology or biology	
24.	Physics	
25.	Physics or physics	
26.	Acidic Oxides: $\mathrm{SO}_{2}, \mathrm{CO}_{2} \quad(1 / 2+1 / 2) \quad$ Basic Oxides: $\mathrm{Na}_{2} \mathrm{O}, \mathrm{MgO} \quad(1 / 2+1 / 2)$	2
27.	(i)Oxidation: Addition of Oxygen or Removal of Hydrogen or Loss of electron (1/2) Reduction: Addition of Hydrogen or Removal of Oxygen or gain of electron (1/2) (ii)In combination two or more reactants combines to give one product, whereas in decomposition a single reactants split up to give two or more products. Therefore, combination reactions are always opposite to decomposition reaction. (1) Any one example for combination and decomposition reaction. ($1 / 2+1 / 2$)	3
28.	Any three points ($1+1+1$) or (i)Any two products (1) (ii) $\mathrm{CaSO}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}+11 / 2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1) (iii)Tartaric Acid + Sodium Hydrogen carbonate ($1 / 2+1 / 2$)	3
29.	Biology	
30.	Biology	
31.	Physics	
32.	Physics	
33.	Physics	
34.	a. $2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{Zn} \rightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ b. $\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{~S})$ c. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$ d. $\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~S})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$ $\mathrm{e} . \mathrm{CuO}+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ Each one carries one mark (Or) (i)Tap water consists of ions of dissolved salts and minerals, so, when electricity passes through the tap water it conducts, whereas distilled water does not contain ions or any other dissolved salts. (ii) An aqueous solution of HCl acid produce H^{+}ions in solution which	5

turns blue litmus into red color, since dry HCl does not produce H^{+}in the absence of water, it will not change the color of blue litmus paper.
(iii) Fresh milk gets soured in summer forming lactic acid. Baking soda being basic in nature neutralizes lactic acid and prevents souring of milk.
(iv) While diluting an acid, it is preferred that the acid is added to water rather than the water being added to the acid. Adding water to a concentrated acid releases a large amount of heat, which can cause an explosion and acid burns on the skin, clothing, and other body parts.
(v) NaCl (Sodium chloride) is a salt that is produced by the neutralization reaction of a strong acid (HCl) and a strong base (NaOH) whose pH value is 7. Therefore, it doesn't show acidic or basic nature.
35.

Each one carries one mark
36. Physics or Physics
37. a) (i)a. Exothermic reaction
(ii)c. Burning of LPG
b)(i) a. $\mathrm{Al}(\mathrm{OH})_{3}$ (1)
(ii)a.Copper (1)

OR
In a displacement reaction the highly reactive metal (reducing agent) or will reduce the less reactive metal (Oxidizing agent) from its salt solution or its molten state. (1/2)
Since oxidation and reduction occur simultaneously it is also coming under
REDOX reaction. (1/2)
Any one Example (1)
38. Biology
a)
b)

OR
39. Physics
a)
b)

OR

