

COMMON PRE-BOARD EXAMINATION 2023-24

Subject: MATHEMATICS BASIC (241)

Class X

MARKING SCHEME

Time: 3 Hrs. Max. Marks: 80

	SECTION A	
	Section A consists of 20 questions of 1 mark each.	
1.	c) x^4y	1
2.	d) 4	1
3.	c) 2	1
4.	d) no solution	1
5.	b) Real and distinct	1
6.	c) 22 cm	1
7.	$d) \sqrt{x^2 + y^2}$	1
8.	b) 10cm	1
9.	c) $\angle B = \angle D$	1
10.	c) 140°	1
11.	c)Tan60 ⁰	1

12.	d)15/17	1
13.	c) $\sqrt{3}$	1
14.	b) 45°	1
15.	c) 264 cm ²	1
16.	b) 2.1cm	1
17.	b) 7.8	1
18.	d)12/13	1
19.	(d) Assertion (A) is false but Reason (R) is true.	1
20.	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).	1
	SECTION B	
	Section B consists of 5 questions of 2 marks each.	
21.	$kx + 3y - (k - 3) = 0$ $12x + ky - k = 0$ For a pair of linear equations to have infinitely many solutions : $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \implies \frac{k}{12} = \frac{3}{k} = \frac{k-3}{k}$ $\frac{k}{12} = \frac{3}{k} \implies k^2 = 36 \implies k = \pm 6$ Also, $\frac{3}{k} = \frac{k-3}{k} \implies k^2 - 6k = 0 \implies k = 0, 6.$ Therefore, the value of k , that satisfies both the conditions, is $k = 6$.	

22.	Basic proportionality theorem says that ,If a line is drawn parallel to one side of a triangle to intersect sides at distinct points, the other two sides are divisame ratio.	the other two
	Ιη ΔΑΒC	
	LM CB	
	AM/MB = AL/LC(1)	(1/2m)
	In ΔACD	
	LN CD	
	AN/DN = AL/LC(2)	(1/2m)
	From equations (1) and (2)	
	AM/MB = AN/DN	
	\Rightarrow MB/AM = DN/AN	
	Adding 1 on both sides	
	MB/AM + 1 = DN/AN + 1	(1/2m)
	(MB + AM)/AM = (DN + AN)/AN AB/AM = AD/AN	
	\Rightarrow AM/AB = AN/AD	
	Hence proved.	
	OR	
	triangle ABC, DE BC	
	Using Thales theorem (BPT - Basic proportionality AD_BE	theorem)
	$\overline{DC} = \overline{EC}$ BE X DC= AD X EC	(1m)
	=> (x + 3)(3x + 4) = x(3x + 19)	(1/2m)
	$=> 3x^2 + 13x + 12 = 3x^2 + 19x$	
	=> 6x = 12	(1/2m)
	=> x = 2	

	SECTION C	
	Section C consists of 6 questions of	3 marks each
26.	Let the fixed charge be Rs x and per km charge be Rs	y(1/2m)
	According to the question,	
	x + 10y = 105(1)	forming
	x + 15y = 155(2)	egs(1m)
	From (1), we get $x = 105 - 10y$ (3)	
	Substituting the value of x in (2), we get	
	105 – 10y + 15y = 155	
	5y = 50	
	y = 10(4)	
	Putting the value of y in (3), we get	Solving eq to find x
	$x = 105 - 10 \times 10 = 5$	and y-(1m)
	Hence, fixed charge is Rs 5 and per km charge = Rs 10	
	Charge for 25 km = x + 25y = 5 + 250 = Rs 255	(1/2m)
	OR	

Let cost of one bat be Rs x	
Let cost of one ball be Rs y	1/2
ATQ	
4x + 1y = 2050(1)	
3x + 2y = 1600 (2)	1/2
from(1)4x + 1y = 2050	
y = 2050 - 4x	1/2
Substite value of y in (2)	
3x + 2(2050 - 4x) = 1600	
3x + 4100 - 8x = 1600	
-5x = -2500	. 10
x = 500 Substitute value of x in (1)	1/2
Substiture value of x in (1) $4x + 1y = 2050$	
4(500) + y = 2050	
2000 + y = 2050	
y = 50	1/2
Hence	. 10
Cost of one bat = Rs. 500 Cost of one ball = Rs. 50	1/2
Cost of one buil – NS. 30	
27. Let us assume that $\sqrt{3}$ be a rational number	
$\sqrt{3} = \frac{a}{b}$ where a and b are co-prime.	1
squaring both the sides	
$\left(\sqrt{3}\right)^2 = \left(\frac{a}{b}\right)^2$	1/2
$\left(\sqrt{3}\right)^2 = \left(\frac{a}{b}\right)^2$ $3 = \frac{a^2}{b^2} \implies a^2 = 3b^2$	
a^2 is divisible by 3 so a is also divisible by 3(1)	
let a=3c for any integer c.	
$(3c)^2 = 3b^2$	1/2
$9c^2=3b^2$	
$b^2 = 3c^2$	
since b^2 is divisible by 3 so, b is also divisible by 3(2)	
From (1) & (2) we can say that 3 in a factor of a and b	1/2
which is contradicting the fact that a and b are co- prime.	
which is contradicting the fact that a and b are co- prime. Thus, our assumption that $\sqrt{3}$ is a rational number is wrong.	

28.	$f(x)=x^2-2x+3$ have zeroes a,β	
	$\Rightarrow a+\beta=2$ (1/2m)	
	⇒a·β=3(1/2m)	
	Now polynomial having $\alpha+2,\beta+2$ as roots is	
	$p(x)=x^2-(a+2+\beta+2)x+(a+2)(\beta+2)$ (1m)	
	$=x^2-(\alpha+\beta+4)x+\alpha\beta+2(\alpha+\beta)+4$	
	$=x^2-(2+4)x+3+2(2)+4$	
29.	Let ABCD be a quadrilateral circumscribing a circle with O such that it touches the circle at point P, Q, R, S.	
	Join the vertices of the quadrilateral ABCD to the center of the circle.	
	In \triangle OAP and \triangle OAS,	
	$\Delta P = \Delta S$ (Tangents from the same point)	1/2 m
	OP = OS (Radii of the circle)	L/
	OA = OA (Common side)	
	$\Delta OAP \cong \Delta OAS$ (SSS congruence condition)	
	∴ ∠POA = ∠AOS	
	⇒∠1 = ∠8	
	Similarly we get,	
	∠2 = ∠3	/2 m
	24-23	./ 2 111
	∠4 = ∠5 ∠6 = ∠7	./2 m

Г		Т	
	Adding all these angles,		
	$\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^{\circ}$	1/2 m	
	\Rightarrow ($\angle 1 + \angle 8$) + ($\angle 2 + \angle 3$) + ($\angle 4 + \angle 5$) + ($\angle 6 + \angle 7$) = 360°		
	\Rightarrow 2 \angle 1 + 2 \angle 2 + 2 \angle 5 + 2 \angle 6 = 360°	1/2 m	
	$\Rightarrow 2(\angle 1 + \angle 2) + 2(\angle 5 + \angle 6) = 360^{\circ}$		
	$\Rightarrow (\angle 1 + \angle 2) + (\angle 5 + \angle 6) = 180^{\circ}$	1/2 m	
	⇒ ∠AOB + ∠COD = 180°		
	Similarly, we can prove that \angle BOC + \angle DOA = 180°		
30.	LHS = (cosecA - sinA)(secA - cosA)		
	$= \left(\frac{1}{\sin A} - \sin A\right) \left(\frac{1}{\cos A} - \cos A\right)$	(1/2m)	
	$= \left(\frac{1 - \sin^2 A}{\sin A}\right) \left(\frac{1 - \cos^2 A}{\cos A}\right)$	(1/2m)	
	$= \left(\frac{\cos^2 A}{\sin A}\right) \left(\frac{\sin^2 A}{\cos A}\right)$	(1/2m)	
	$= \sin A \cos A$		
	$RHS = \frac{1}{\tan A + \cot A}$		
	$= \frac{1}{\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}}$	(1/2m)	
	$= \frac{\sin A \cos A}{\sin^2 A + \cos^2 A}$	(1/2m)	
	$= \sin A \cos A$	(1/2m)	
	L.H.S. = R.H.S.		
	OR		

$LHS = (1 + \cot A - \cos ecA)(1 + \tan A + \sec A)$	
$= \left(1 + \frac{\cos A}{\sin A} - \frac{1}{\sin A}\right) \left(1 + \frac{\sin A}{\cos A} + \frac{1}{\cos A}\right)$	(1/2m)
$= \left(\frac{\sin A + \cos A - 1}{\sin}\right) \left(\frac{\cos A + \sin A + 1}{\cos A}\right)$	(1/2m)
$= \frac{\left(\sin A + \cos A\right)^2 - 1}{\sin A \cos A}$	(1m)
$= \frac{1 + 2\sin A\cos A - 1}{\sin A\cos A} \qquad \left[\because \sin^2 A + \cos^2 A = 1\right]$ $= 2.$	(1m)
Hence proved	
1. Total number of cards in a deck of cards = 52	
∴Total number of outcomes = 52	
$\therefore P(A) = rac{ ext{Outcomes in favour of event A}}{ ext{Total number of outcomes}}$	
=2/52 =1/26	(1m)
(ii) Let B denote the event of getting a face card.	
$\therefore P(B) = rac{ ext{Outcomes in favour of eventB}}{ ext{Total number of outcomes}} = rac{12}{52} = rac{3}{13}$	
	(1m)
(iii) Let C denote the event of getting a queen of diamond.	
$\therefore P(C) = rac{ ext{Outcomes in favour of eventC}}{ ext{Total number of outcomes}} = rac{1}{52}$	(1m)
SECTION D	
Section D consists of 4 questions of 5 mark	s each

32.	Let the first tap takes x hours to completely fill tank ⇒ Second tap will take 2 hours less	(1/2m)	
	⇒ According to question		
	$\frac{1}{x} + \frac{1}{x-2} = \frac{8}{15}$	(1m)	
	$\frac{x-2+x}{x(x-2)}=\frac{8}{15}$		
	$\frac{2x-2}{x(x-2)} = \frac{18}{15}$		
	$rac{(2x-1)}{x(x-2)} = rac{18}{15}$		
	15(x-1) = 4x(x-2)		
	$15x - 15 = 4x^2 - 8x$	(1m)	
	$4x^2 - 23x + 15 = 0$		
	$4x^2 - 20x - 3x + 15 = 0$		
	4x(x-5) - 3(x-5) = 0		
	(x-5)(4x-3) = 0		
	$x=5$ or $rac{3}{4}$	(1m)	
	Since $\frac{3}{4}-2=$ Negative time $\frac{3}{4}$ is not possible.	(1/2m)	
	Which is not possible		
	\Rightarrow x = 5		
	Rate of 1 st pipe = 5 hours	(1m)	
	Rate of 2 nd pipe = 5 - 2 = 3hours	(1m)	
	OR		
	Let the speed of train be x km /h Distance = 180 km So, time = 180 / x	(1/2m)	
	When speed is 9 km/h more, time taken = 180 / x+9 According to the given information:	(1m)	
	180 / x - 180 / x+9 = 1 180 (x+9-x) / x(x+9) = 1 180 * 9 = x(x+9)	(1m)	
	$1620 = x^2 + 9x$	(1m)	
	$x^2 + 9x - 1620 = 0$	(1m)	
	$x^2 + 45x - 36x - 1620 = 0$ x(x+45) - 36(x+45) = 0		
	(x-36)(x+45) = 0	(1m)	
	x = 36 or -45 But x being speed cannot be negative.	(1/2m)	
	So, x = 36 Hence, the speed of the train is 36km/h		
	Hence, the speed of the train is 36km/h.		

33.

Statement:

If a line is drawn parallel to one side of a triangle intersecting the other two sides in distinct points, then the other two sides are divided in the same ratio. -----(1/2m)

A ΔABC in which $DE \parallel BC$ and DE intersects AB and AC at D and E respectively.

To prove that:

$$\frac{AD}{DB} = \frac{AE}{EC}$$

Construction:

Join BE and CD.

---(1/2m)

$$ar(\Delta ADE) = \frac{1}{2} \times AD \times EL$$
 ____(1/2m)

$$ar(\Delta DBE) = rac{1}{2} imes DB imes EL$$

---(1/2m)

Therefore the ratio of these two is
$$rac{ar(\Delta ADE)}{ar(\Delta DBE)} = rac{AD}{DB}$$
....(1)

---(1/2m)

Similarly,

$$ar(\Delta ADE) = ar(\Delta ADE) = rac{1}{2} imes AE imes DM$$

$$ar(\Delta ECD) = rac{1}{2} imes EC imes DM$$

Therefore the ratio of these two is
$$\frac{ar(\Delta ADE)}{ar(\Delta ECD)} = \frac{AE}{EC}$$
....(2)

Now, ΔDBE and ΔECD being on the same base DE and between the same parallels DE

BC, we have,

$$ar(\Delta DBE) = ar(\Delta ECD)....$$
 (3)

From equations 1, 2, 3 we can conclude that

---(1/2m)

---(1/2m)

---(1/2m)

$$\frac{AD}{DB} = \frac{AE}{EC}$$

Hence we can say that the basic proportionality theorem is proved.

In ∆ POQ, AB || PQ

$$: {OA \over AP} = {OB \over BQ}$$
 (basic proportionality theorem) (i)

34.

Total surface area of block

= Total Surface area of cube

- Base area of hemisphere

---(1m)

Total Surface area of cube

Given that side of cube is 5 cm

Total Surface area of the cube = 6 (side)2

=
$$6 (5)^2$$

= $6 \times 5 \times 5$
= 150 cm^2 (1/2m)

Curved surface area of hemisphere

Diameter of hemisphere = 4.2 cm

So, radius =
$$r = \frac{Diameter}{2} = \frac{4.2}{2} = 2.1 \text{ cm}$$
 (1/2m)

Curved surface area of hemisphere = $2\pi r^2$

$$= 2 \times \frac{22}{7} \times (2.1)^{2}$$

$$= 2 \times \frac{22}{7} \times 2.1 \times 2.1$$

$$= 27.72 \text{ cm}^{2}$$
---(1m)

Base area of hemisphere

Base of hemisphere is a circle with radius 2.1 cm

Base area of hemisphere = Area of circle

$$=\pi r^2$$

$$=\frac{22}{7}\times(2.1)^2$$

$$=\frac{22}{7} \times 2.1 \times 2.1$$

$$= 22 \times 0.3 \times 2.1$$

___(1m)

 $= 13.86 \text{ cm}^2$

Therefore,

Total surface area of block

- = Total Surface area of cube
 - + Curved Surface area of hemisphere
 - Base area of hemisphere

$$= (150) + (27.72) - (13.86)$$

$$= 177.72 - 13.86$$

---(1m)

 $= 163.86 \text{ cm}^2$

OR

Let the height of the conical part be h.

Radius of the cone = Radius of the hemisphere = r = 21 cm

The toy can be diagrammatically represented as

Volume of the cone $=\frac{2}{3}$. Volume of the hemisphere

Egu---(1/2m)

$$\therefore rac{1}{3}\pi r^2 h = rac{2}{3} imes rac{2}{3}\pi r^3$$

Formula____(1 m)

$$\Rightarrow h = rac{rac{2}{3} imes rac{2}{3} \pi r^3}{rac{1}{3} \pi r^2}$$

$$\Rightarrow h = \frac{4}{3}r$$

$$\therefore h = \frac{4}{2} \times 21cm = 28cm$$

____(1/2 m)

Thus, surface area of the toy = Curved surface area of cone + Curved surface area of hemi

____(1/2 m)

Formula _____(1 m)

$$= \pi rl + 2\pi r^2$$

Finding "I"---(1 m)

$$=\pi r\sqrt{h^2+r^2}+2\pi r^2$$

$$=\pi r\Big(\sqrt{h^2+r^2}+2r\Big)$$

$$=rac{22}{7} imes 21cmigg(\sqrt{{(28cm)}^2+{(21cm)}^2}+2 imes 21cmigg)$$

$$= 66 \Big(\sqrt{784 + 441} + 42 \Big) cm^2$$

$$66\Big(\sqrt{1225}+42\Big)cm^2$$

$$= 66(35+42) \text{ cm}^2$$

$$= 66 \times 77 \text{ cm}^2$$

$$= 5082 \text{ cm}^2$$

Correct answer--- (1/2m)

25	
SS	١.

Class interval	Frequency	Cumulative frequency
0 - 10	f1	f1
10 - 20	5	5 + f1
20 - 30	9	14 + f1
30 - 40	12	26 + f1
40 - 50	f2	26 + f1 + f2
50 - 60	3	29 + f1 + f2
60 - 70	2	31 + f1 + f2

Table with correct entries _____(1 ½ m)

Given

Median = 32.5

The median class =
$$30 - 40$$

$$I = 30$$
, $h = 40 - 30 = 10$, $f = 12$ and $F = 14 + f1$

Median
$$= l + rac{rac{N}{2} - F}{f} imes h$$

$$\Rightarrow 32.5 = 30 + rac{20 - (14 + f1)}{12} imes 10$$

$$\Rightarrow 32.5 - 30 = \frac{20 - 14 - f1}{12} \times 10$$

$$\Rightarrow 2.5 = rac{6-f1}{12} imes 10$$

$$\Rightarrow 2.5 = rac{6-f1}{6} imes 5$$

$$\Rightarrow$$
 2.5 x 6 = (6 - f1) x 5

	⇒25×	6 = (6 - f1) x 5		
		(6 - f1) x 5		
	⇒ 15/5 =	: 6 - f1		
	⇒ 3 = 6 ·	- f1		
	⇒ f1 = 6	- 3	(1 ½ m)	
	⇒ f1 = 3			
	Given su	m of frequencies = 40		
	⇒ f1 + 5	+ 9 + 12 + f2 + 3 + 2 = 40		
	⇒ 3 + 5	+ 9 + 12 + f2 + 3 + 2 = 40	(1/2m)	
	⇒ 34 + f	2 = 40		
	\Rightarrow f2 = 6			
	∴ f1 = 3 a	and f2 = 6		
		SECTION		
	Case s	SECTION tudy-1	<u> </u>	
36.				
	i)	AP: 10, 16, 22,	(1m)	
	ii)	a = 10 , $d = 6$, $n = 10$,		
		$a_{10} = a + 9d$ $a_{10} = 10 + 9 \times 6 = 64$	(1m)	
	iii)	$S_8 = \frac{8}{2}(2 \times 10 + 7 \times 6)$	Formula—(1m)	
	,	=248m	Substituting and	
		OR	finding value(1m)	
		$S_{10} = \frac{10}{2}(10 + 64) = 370m$	Formula—(1m)	
		Z	Substituting and finding value(1m)	
	 			
37.	Case Stu	dy – 2		
37.	Case Stu	dy – 2		

LB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \Rightarrow \text{LB} = \sqrt{(0 - 5)^2 + (7 - 10)^2}$	1/2	
LB = $\sqrt{(5)^2 + (3)^2} \Rightarrow LB = \sqrt{25 + 9} LB = \sqrt{34}$		
Hence the distance is 150 $\sqrt{34}$ km	1/2	
ii)		
Coordinate of Kota (K) is $\left(\frac{3 \times 5 + 2 \times 0}{3 + 2}, \frac{3 \times 7 + 2 \times 10}{3 + 2}\right)$	1/2	
$= \left(\frac{15+0}{5}, \frac{21+20}{5}\right) = \left(3, \frac{41}{5}\right)$	1/2	
iii)		
L(5, 10), N(2,6), P(8,6)		1/
LN = $\sqrt{(2-5)^2 + (6-10)^2} = \sqrt{(3)^2 + (4)^2} = \sqrt{9+16} = \sqrt{25} = 5$		1/3
NP = $\sqrt{(8-2)^2 + (6-6)^2} = \sqrt{(4)^2 + (0)^2} = 4$		1/2
$PL = \sqrt{(8-5)^2 + (6-10)^2} = \sqrt{(3)^2 + (4)^2} \Rightarrow LB = \sqrt{9+16} = \sqrt{25} = 5$	ı	
as LN = PL \neq NP, so Δ LNP is an isosceles triangle.		1/2
[OR]		
Let A (0, b) be a point on the y – axis then AL = AP		
$\Rightarrow \sqrt{(5-0)^2 + (10-b)^2} = \sqrt{(8-0)^2 + (6-b)^2}$		1
$\Rightarrow (5)^2 + (10 - b)^2 = (8)^2 + (6 - b)^2$		1,
$\Rightarrow 25 + 100 - 20b + b^2 = 64 + 36 - 12b + b^2 \Rightarrow 8b = 25 \Rightarrow b = \frac{25}{8}$		1/
So, the coordinate on y axis is $\left(0, \frac{25}{8}\right)$		1/

(i) $\sin 60^\circ = \frac{PC}{PA}$ ----1/2m -----1/2 m $\Rightarrow \frac{\sqrt{3}}{2} = \frac{18}{PA} \Rightarrow PA = 12\sqrt{3} \text{ m}$ (ii) $\sin 30^\circ = \frac{PC}{PR}$ -----1/2m -----1/2 m $\Rightarrow \frac{1}{2} = \frac{18}{PB} \Rightarrow PB = 36 \text{ m}$ (iii) $\tan 60^\circ = \frac{PC}{AC} \Rightarrow \sqrt{3} = \frac{18}{AC}$ \Rightarrow AC = $6\sqrt{3}$ m ----1/2 m ----1/2m $\tan 30^\circ = \frac{PC}{CB} \Rightarrow \frac{1}{\sqrt{3}} = \frac{18}{CB}$ ----1/2m \Rightarrow CB = 18 $\sqrt{3}$ m ----1/2 m Width AB = AC + CB = $6\sqrt{3}$ + $18\sqrt{3}$ = $24\sqrt{3}$ m οг RB = PC = 18 m & ----1/2 m $PR = CB = 18 \sqrt{3} \text{ m}$ ----1/2m $\tan 30^\circ = \frac{QR}{PR} \Rightarrow \frac{1}{\sqrt{3}} = \frac{QR}{18\sqrt{3}}$ \Rightarrow QR = 18 m ----1/2m QB = QR + RB = 18 + 18 = 36m.-----1/2 m Hence height BQ is 36m