SET	A

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION 2022 PHYSICS-042

CLASS: XI Max. Marks: 70

		MARKING SCHEME	
SET	QN.NO	VALUE POINTS	MARK
A	1	(iii) 1.7 g cm ⁻³	S 1
	2	(i) Tension and surface tension	1
	3	1 mark for any one option	1
	4	(ii) 48km/h	1
	5	(iii) R = 4H	1
	6	(ii) halved	1
	7	(i) or (ii)	1
	8	(i) mg ($\sin \alpha + \mu \cos \alpha$)	1
	9	(ii) Move in opposite directions with equal speeds	1
	10	(iii) Initial velocity of the object	1
	11	(ii) 13.5J	1
	12	(iii) 1:2	1
	13	(ii) or (iv)	1
	14	(ii) 2	1
	15	1 mark for any one option	1
	16	(iii) Assertion(A) is true but Reason(R) is false.	1
	17	(i) Both Assertion(A) and Reason(R) are true and Reason(R) is the correct	1
		explanation of A.	
	18	1 mark for any one option	1
	19	any four limitations of the method of dimensional analysis.	$\frac{1}{2} + \frac{1}{2} + \frac{1}$
	20	Showing dimensionally that $T^2\alpha r^3$ OR	3
		Proving 1000J=25×10 ⁷ new system of unit (If dimensions are correct in both sides of equation give 2 marks)	3
	21	(i)	

30		
	Obtaining an expression for the centre of mass of a system of two particles. Diagram	
	Derivation	1/ ₂ 1+1
	OR	
(a)Derivation of expression for rotational kinetic energy		
	Diagram	
	Derivation	
	(b) zero	1
21		
31	(a) Proving the path of projectile is a parabola	1
	Diagram Mathematical expression	1 1½
	Mathematical expression Justification of parabolic path	1/2
	(b) Proof for two angles θ and (90- θ) of oblique projection the range remains the	$\frac{72}{2}$
		2
same.		
	(a)Derivation i) maximum height (ii) time of flight and (iii) horizontal range.	1+1+1
		1.1.1
	(b)	
	$KE(initial) = \frac{1}{2}mu^2$	
		1/2
	$KE(final) = \frac{1}{2}m(u\cos\theta)^2$	
	_	1/2
	$\frac{1}{2}\text{mu}^2\cos^2\theta = \frac{3}{4} \times \frac{1}{2}\text{mu}^2$	
		1/2
	$\cos \theta = \frac{\sqrt{3}}{2}$	
	$\theta = 30^{\circ}$	1/2
	0 - 30	
32	(a) Pulling is easier than Pushing (½ mark for statement only)	
	Two free body diagrams	1/2 +1/2
	Two equations	1/2 +1/2
	Justification	1
	(b)	17
	a = g sinθ - μg cosθ	1/2
	Substitution and final answer 2.835m/s ²	1+1/2
	OR	
	Deriving an expression for the maximum safe velocity of a car moving in a banked	
	circular road	
	Free body diagram	11/2
	Derivation	1½
	(b) $4g - T = 4a$ (1)	
	4g - T = 4a(1) and for 3kg block	1/2
	$T - 3g = 3a \qquad \qquad (2)$	1/2
	solving both equation we will get	
	$acceleration = \frac{g}{7} = \frac{10}{7} \text{ m/s}^2$	1/2
	and tension = $\frac{24g}{7} = \frac{240}{7} \text{ m/s}^2$ 1 4m/s ² 33 6N	
	and tension = $\frac{1}{7} = \frac{1}{7} \text{ m/s}^2$ 1.4m/s ² , 33.6N	1/2

33	(a) The relative velocity of approach before impact is equal to the relative velocity	
33		
	of separation after impact. – Proof	
	Equation according to law of conservation of energy Equation according to law of conservation of momentum	
	Remaining part of derivation (b)	
	∴ Mass of water pumped = V olume × Density	
	$= (30 \text{ m}^3)(10^3 \text{ kg m}^{-3}) = 3 \times 10^4 \text{kg}$	
	$P_{\text{output}} = \frac{W}{t} = \frac{\text{mgh}}{t} = \frac{(3 \times 10^4 \text{kg})(10 \text{ ms}^{-2})(40 \text{ m})}{900 \text{ s}}$	1/2
	$=\frac{4}{3}\times10^4\mathrm{W}$	
	Posttynit	1/2
	Efficiency, $\eta = \frac{P_{\text{output}}}{P_{\text{input}}}$	
	Pointsut 4×10^4 4	
	$P_{input} = \frac{P_{output}}{\eta} = \frac{4 \times 10^4}{3 \times \frac{30}{100}} = \frac{4}{9} \times 10^5$	1/2
	100	1/
	$= 44.4 \times 10^3 \text{W} = 44.4 \text{ kW}.$	1/2
	OR	
	(a)Deriving an expression for the potential energy stored in a system of a block	
	attached to a massless spring, when the block is pulled from its mean position.	
	Diagram	1/2
	Derivation (any method graphical or calculus based)	2½
	(b)	272
	$\frac{1}{2}mv^2 = \frac{1}{2}kx^2$	1/2
	$v^2 = \frac{kx^2}{m} = \frac{24.5 \times (\frac{40}{100})^2}{2}$	1
	(i) $v = 0.4\sqrt{12.25} = 0.4 \times 3.5 = 1.4$ m/s	1/2
2.4		
34	(i) A cricketer lowers his hands while catching a ball because this increases the	1
	time of catch which in turn decreases the momentum since force = (change in	
	momentum) / (time). Therefore, he needs to apply a small force to stop the ball	
	and also the ball exerts a small force on his hands which prevents him from injury.	
(ii) Newton's first law from second law (iii) $a = F/m = -50/20 = -2.5 \text{ m/s}^2$		1
	v = u + at	1
	0 = 15 - 2.5 .t so $t = 6s$	1
	OB	
	v = u + at	1
	$3.5 = 2 + a \times 25$ so $a = 0.06 \text{ m/s}^2$	1
	$F = ma = 3 \times 0.06 = 0.18 \text{ N}$	1 1
35	(i) Torque is vector and work is scalar	1
33	(i) $\zeta = r$.F. $\sin \theta$	1
	If r is more and $\theta = 90^{\circ}$ then torque will be maximum	
	(iii) $\zeta = 2 \times 0.04 = 0.08 \text{ N-m}$	
	OR	
	$mg \times 5.0 = (2x5) \times g \times 33.0$	
	m= 66.0 g	