INDIAN SCHOOL MUSCAT

 HALF YEARLY EXAMINATION 2022 PHYSICS-042CLASS: XI
Max. Marks: 70

MARKING SCHEME			
SET	QN.NO	VALUE POINTS	$\begin{aligned} & \text { MARK } \\ & \text { S } \end{aligned}$
A	1	(iii) $1.7 \mathrm{~g} \mathrm{~cm}^{-3}$	1
	2	(i) Tension and surface tension	1
	3	1 mark for any one option	1
	4	(ii) $48 \mathrm{~km} / \mathrm{h}$	1
	5	(iii) $\mathrm{R}=4 \mathrm{H}$	1
	6	(ii) halved	1
	7	(i) or (ii)	1
	8	(i) $\mathrm{mg}(\sin \alpha+\mu \cos \alpha)$	1
	9	(ii) Move in opposite directions with equal speeds	1
	10	(iii) Initial velocity of the object	1
	11	(ii) 13.5 J	1
	12	(iii) $1: 2$	1
	13	(ii) or (iv)	1
	14	(ii) 2	1
	15	1 mark for any one option	1
	16	(iii) Assertion(A) is true but Reason(R) is false.	1
	17	(i) Both Assertion(A)and Reason(R) are true and Reason(R) is the correct explanation of A .	1
	18	1 mark for any one option	1
	19	any four limitations of the method of dimensional analysis.	$\begin{aligned} & 1 / 2+1 / 2 \\ & +1 / 2+1 / 2 \end{aligned}$
	20	Showing dimensionally that $\mathrm{T}^{2} \alpha \mathrm{r}^{3}$ OR Proving $1000 \mathrm{~J}=25 \times 10^{7}$ new system of unit (If dimensions are correct in both sides of equation give 2 marks)	
	21	(i)	

				1

30	Definition- centre of mass of a system. Obtaining an expression for the centre of mass of a system of two particles. Diagram Derivation OR (a)Derivation of expression for rotational kinetic energy Diagram Derivation (b) zero	$\begin{array}{\|l\|} \hline 1 / 2 \\ 1 / 2 \\ 1+1 \\ \\ 1 / 2 \\ 1 / 2 \\ 11 / 2 \\ 1 \end{array}$
31	(a) Proving the path of projectile is a parabola Diagram Mathematical expression Justification of parabolic path (b) Proof for two angles θ and (90- θ) of oblique projection the range remains the same. OR (a)Derivation i) maximum height (ii) time of flight and (iii) horizontal range. (b) $\begin{aligned} & \operatorname{KE}(\text { initial })=\frac{1}{2} \mathrm{mu}^{2} \\ & \mathrm{KE}(\text { final })=\frac{1}{2} \mathrm{~m}(\mathrm{u} \cos \theta)^{2} \\ & \frac{1}{2} \mathrm{mu}^{2} \cos ^{2} \theta=\frac{3}{4} \times \frac{1}{2} \mathrm{mu}^{2} \\ & \cos \theta=\frac{\sqrt{3}}{2} \\ & \theta=30^{\circ} \end{aligned}$	$\begin{aligned} & 1 \\ & 11 / 2 \\ & 1 / 2 \\ & 2 \\ & 1+1+1 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
32	(a) Pulling is easier than Pushing ($1 / 2$ mark for statement only) Two free body diagrams Two equations Justification (b) $a=g \sin \theta-\mu g \cos \theta$ Substitution and final answer $2.835 \mathrm{~m} / \mathrm{s}^{2}$ OR Deriving an expression for the maximum safe velocity of a car moving in a banked circular road Free body diagram Derivation (b) $\begin{aligned} & 4 g-T=4 a \\ & \text { and for } 3 k g \text { block } \\ & T-3 g=3 a \end{aligned}$ solving both equation we will get acceleration $=\frac{9}{7}=\frac{10}{7} \mathrm{~m} / \mathrm{s}^{2}$ and tension $=\frac{24 \mathrm{~g}}{7}=\frac{240}{7} \mathrm{~m} / \mathrm{s}^{2} \quad 1.4 \mathrm{~m} / \mathrm{s}^{2}, 33.6 \mathrm{~N}$	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 \\ & 1 / 2 \\ & 1+1 / 2 \\ & \\ & \\ & \\ & 11 / 2 \\ & 11 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$

	33	(a) The relative velocity of approach before impact is equal to the relative velocity of separation after impact. - Proof Equation according to law of conservation of energy Equation according to law of conservation of momentum Remaining part of derivation (b) $\begin{aligned} & \therefore \text { Mass of water pumped }=\mathrm{V} \text { olume } \times \text { Density } \\ & =\left(30 \mathrm{~m}^{3}\right)\left(10^{3} \mathrm{~kg} \mathrm{~m}^{-3}\right)=3 \times 10^{4} \mathrm{~kg} \\ & P_{\text {output }}=\frac{\mathrm{W}}{\mathrm{t}}=\frac{\mathrm{mgh}}{\mathrm{t}}=\frac{\left(3 \times 10^{4} \mathrm{~kg}\right)\left(10 \mathrm{~ms}^{-2}\right)(40 \mathrm{~m})}{900 \mathrm{~s}} \\ & =\frac{4}{3} \times 10^{4} \mathrm{~W} \end{aligned}$ Efficiency, $\eta=\frac{P_{\text {output }}}{P_{\text {input }}}$ $\begin{aligned} & P_{\text {input }}=\frac{P_{\text {output }}}{\eta}=\frac{4 \times 10^{4}}{3 \times \frac{30}{100}}=\frac{4}{9} \times 10^{5} \\ & =44.4 \times 10^{3} \mathrm{~W}=44.4 \mathrm{~kW} \end{aligned}$ OR (a)Deriving an expression for the potential energy stored in a system of a block attached to a massless spring, when the block is pulled from its mean position. Diagram Derivation (any method graphical or calculus based) (b) $\begin{aligned} & \frac{1}{2} m v^{2}=\frac{1}{2} k x^{2} \\ & v^{2}=\frac{k x^{2}}{m}=\frac{24.5 \times\left(\frac{40}{100}\right)^{2}}{2} \end{aligned}$ $\begin{equation*} v=0.4 \sqrt{12.25}=0.4 \times 3.5=1.4 \mathrm{~m} / \mathrm{s} \tag{i} \end{equation*}$	1 1 1
	34	(i) A cricketer lowers his hands while catching a ball because this increases the time of catch which in turn decreases the momentum since force $=$ (change in momentum) / (time). Therefore, he needs to apply a small force to stop the ball and also the ball exerts a small force on his hands which prevents him from injury. (ii) Newton's first law from second law (iii) $\begin{aligned} & \mathrm{a}=\mathrm{F} / \mathrm{m}=-50 / 20=-2.5 \mathrm{~m} / \mathrm{s}^{2} \\ & \mathrm{v}=\mathrm{u}+\mathrm{at} \\ & 0=15-2.5 \mathrm{t} \quad \text { so } \mathrm{t}=6 \mathrm{~s} \quad \text { OR } \\ & \\ & \mathrm{v}=\mathrm{u}+\mathrm{at} \\ & 3.5=2+\mathrm{a} \times 25 \quad \text { so } \mathrm{a}=0.06 \mathrm{~m} / \mathrm{s}^{2} \\ & \mathrm{~F}=\mathrm{ma}=3 \times 0.06=0.18 \mathrm{~N} \end{aligned}$	1 1 1 1 1 1 1
	35	(i) Torque is vector and work is scalar (ii) $\zeta=$ r .F. $\sin \theta$ If r is more and $\theta=90^{\circ}$ then torque will be maximum (iii) $\zeta=2 \times 0.04=0.08 \mathrm{~N}-\mathrm{m}$ OR $\begin{aligned} \operatorname{mg} \times 5.0 & =(2 \times 5) \times \mathrm{g} \times 33.0 \\ \mathrm{~m} & =66.0 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$

