INDIAN SCHOOL MUSCAT

NAME OF THE EXAMINATION	FIRST PERIODIC TEST	CLASS: XI
DATE OF EXAMINATION		SUBJECT: MATHEMATICS
TYPE: THEORY	MARKING SCHEME	SET- A,B \& C

SET	Q.NO	VALUE POINTS	MARK
A	1	$\mathrm{B}-(\mathrm{A} \cup \mathrm{C})$ or $\mathrm{B} \cap(\mathrm{A} \cup \mathrm{C})^{\prime}$	1
A	2	FALSE	1
A	3	$\mathrm{x}<\mathrm{y} \Rightarrow \frac{x}{b}>\frac{y}{b}$	1
A	4	$\mathrm{x} \in\left[\frac{9}{2}, \infty\right)$	1
A	5	$\begin{aligned} & -2 x>6 \\ & \Rightarrow x<-3 \end{aligned}$ \therefore solution set is $(-\infty,-3)$	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$
A	6	Let $\mathrm{C}=$ the set of people who like cricket and $\mathrm{T}=$ the set of people who like tennis. $\begin{aligned} & \mathrm{n}(\mathrm{C} \cup \mathrm{~T})=56, \mathrm{n}(\mathrm{C})=40 \mathrm{n}(\mathrm{C} \cap \mathrm{~T})=10 \\ & \mathrm{n}(\mathrm{C} \cup \mathrm{~T})=\mathrm{n}(\mathrm{C})+\mathrm{n}(\mathrm{~T})-\mathrm{n}(\mathrm{C} \cap \mathrm{~T}) \\ & 65=40+\mathrm{n}(\mathrm{~T})-10 \end{aligned}$ $n(T)=35$, no of people like Tennis. Number of like tennis only and not cricket $=35-10=25$	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$
A	7	$\begin{align*} & 3 x-2 x>-12+7 \\ & \Rightarrow x>-5 \text {----------------------------------- } \\ & -x+2 x>11-6 \tag{i}\\ & \Rightarrow x>5------(i i) \end{align*}$ Hence, solution set of the in equations are real numbers, x greater than 5	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$

\begin{tabular}{|c|c|c|c|}
\hline \& \& \& $\frac{1}{2}$ \\
\hline A \& 8 \& $$
\begin{aligned}
& U=\{1,2,3,4,5,6,7,8,9,10\}, A=\{1,2,3,5\}, B=\{2,4,6,7\} \text { and } \\
& C=\{2,3,4,8\} \\
& B \cup C=\{2,3,4,6,7,8\} \Rightarrow(B \cup C)^{\prime}=\{1,5,9\} \\
& C-A=\{4,8\} \Rightarrow(C-A)^{\prime}=\{1,2,3,5,6,7,9,10\}
\end{aligned}
$$ \& $$
\begin{aligned}
& \frac{1}{2}+\frac{1}{2} \\
& \frac{1}{2}+\frac{1}{2}
\end{aligned}
$$ \\
\hline A \& 9 \& $$
\begin{aligned}
& \mathrm{x}+\mathrm{a}+\mathrm{c}+\mathrm{d}=4000 \\
& \mathrm{y}+\mathrm{a}+\mathrm{d}+\mathrm{b}=2000 \\
& \mathrm{z}+\mathrm{b}+\mathrm{c}+\mathrm{d}=1000 \\
& \mathrm{a}+\mathrm{d}=500, \mathrm{~b}+\mathrm{d}=300, \mathrm{C}+\mathrm{d}=400 \mathrm{~d}=200 \\
& \text { On Solving } \mathrm{a}=300, \mathrm{~b}=100, \mathrm{c}=200 \\
& \text { (i) } \mathrm{x}=4000-300-200-200=3300 \\
& \text { (ii) } \mathrm{y}=2000-300-200-100=1400 \\
& \text { (iii) } \mathrm{z}=1000-100-200-200=500 \\
& \text { None of these }=10,000-(3300+1400+500+300+100+200+200) \\
& \quad=10,000-6000 \\
& \quad=4000
\end{aligned} \quad \begin{aligned}
& \text { x- newspaper A only ,y-newspaper B only ,z- newspaper C only }
\end{aligned}
$$ \& $$
\begin{aligned}
& \frac{1}{2}+\frac{1}{2} \\
& \frac{1}{2}+\frac{1}{2} \\
& \frac{1}{2}+\frac{1}{2}
\end{aligned}
$$ \\
\hline A \& 10 \& Ans. Let x litres of 30% acid sol. Is required to be added.
$$
\begin{aligned}
& 30 \% x+12 \% \text { of } 600>15 \% \text { of }(x+600) \text { and } \\
& 30 \% x+12 \% \text { of } 600<18 \% \text { of }(x+600) \\
& \frac{30 x}{100}+\frac{12}{100}(600)>\frac{15}{100}(x+600) \\
& \frac{30 x}{100}+\frac{12}{100}(600)<\frac{18}{100}(x+600) \\
& x>120 \text { and } x<300 \\
& \text { i.e. } 120<x<300 .
\end{aligned}
$$ \& 1

1
1

1 \\
\hline
\end{tabular}

A	11	Let C be the set of students in chemistry class and P be the set of students in physics class. $n(C)=20, n(P)=30$ (i) $\mathrm{C} \cap \mathrm{P}=\phi$ $\begin{aligned} n(C \cup P) & =n(C)+n(P) \\ & =20+30 \\ & =50 \end{aligned}$ (ii) $\mathrm{n}(\mathrm{C} \cap \mathrm{P})=10$ $\begin{aligned} \mathrm{n}(\mathrm{C} \cup \mathrm{P})= & \mathrm{n}(\mathrm{C})+\mathrm{n}(\mathrm{P})-\mathrm{n}(\mathrm{C} \cap \mathrm{P}) \\ = & 20+30-10 \\ & =40 \end{aligned}$	1 1 1
		End of the Marking Scheme -Set A	
B	4	$\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})$	1
B	5	$(-\infty,-3]$	1
B	7	$\begin{aligned} & \mathrm{n}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{x}+7+\mathrm{y}=21 \\ & \mathrm{x}+\mathrm{y}=14 \\ & \mathrm{n}\left(\mathrm{~A}^{\prime} \cap \mathrm{B}^{\prime}\right)=9=\mathrm{n}\left[(\mathrm{~A} \cup \mathrm{~B})^{\prime}\right] \end{aligned}$ $\mathrm{n}(\mathrm{~A} \cap \mathrm{~B})^{\prime}=\mathrm{x}+\mathrm{y}+9=14+9=23$	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$
B	11	(1) The total number of students $-1+4+6+5+7+6+6=35$ (2) How many took Maths but not Chemistry- $5+6=11$ (3) How many took exactly one of the three subjects $-1+4+6=11$	$\begin{aligned} & \frac{1}{2}+\frac{1}{2} \\ & \frac{1}{2}+\frac{1}{2} \\ & \frac{1}{2}+\frac{1}{2} \end{aligned}$

		End of the Marking Scheme -Set B	
C	2	$(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A})$ or $\mathrm{A} \Delta \mathrm{B}$	1
C	4	$\{-4,-3,-2,-1,0,1,2,3,4\}$	1
C	5	(a) $\frac{x}{b}<\frac{y}{b}$	1
C	8	$\begin{aligned} & \mathrm{U}=\{1,2,3,4,5,6,7,8,9\}, \mathrm{A}=\{2,4,6,8\}, \mathrm{B}=\{2,3,5,7\} \\ & (\mathrm{AUB})^{\prime}=\{1,9\}, A^{\prime}=\{1,3,5,7,9\}, \mathrm{B}^{\prime}=\{1,4,6,8,9\} \\ & A^{\prime} \cap B^{\prime}=\{1,9\}=(A U B)^{\prime} \\ & (A \cap B)^{\prime}=\{1,3,4,5,6,7,8,9\}, A^{\prime} \cup B^{\prime}=\{1,3,4,5,6,7,8,9\} \\ & \therefore(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime} \end{aligned}$	$\begin{aligned} & \frac{1}{2}+\frac{1}{2} \\ & \frac{1}{2}+\frac{1}{2} \end{aligned}$
C	10	Let C be the set of students in chemistry class and P be the set of students in physics class. $\begin{aligned} & \mathrm{n}(\mathrm{C})=\mathbf{3 0}, \mathrm{n}(\mathrm{P})=40 \\ & \begin{aligned} (\mathrm{i}) \mathrm{C} \cap \mathrm{P} & =\phi \\ \mathrm{n}(\mathrm{C} \cup \mathrm{P}) & =\mathrm{n}(\mathrm{C})+\mathrm{n}(\mathrm{P}) \\ & =\mathbf{3 0}+\mathbf{4 0} \\ & =70 \end{aligned} \end{aligned}$ (ii) $\mathrm{n}(\mathrm{C} \cap \mathrm{P})=10$ $\begin{aligned} \mathrm{n}(\mathrm{C} \cup \mathbf{P})= & \mathrm{n}(\mathrm{C})+\mathrm{n}(\mathbf{P})-\mathrm{n}(\mathrm{C} \cap \mathrm{P}) \\ = & \mathbf{3 0}+\mathbf{4 0}-10 \\ & =\mathbf{6 0} \end{aligned}$	1 1 1
C	11	(i)No of people surveyed in all $=43$ (ii) No of people like product C only $=10$ (iii) No of people like exactly two products $=6+4+7=17$	$\begin{aligned} & \frac{1}{2}+\frac{1}{2} \\ & \frac{1}{2}+\frac{1}{2} \\ & \frac{1}{2}+\frac{1}{2} \end{aligned}$
		End of the Marking Scheme -Set C	

