SET
ABC

INDIAN SCHOOL MUSCAT
HALF YEARLY EXAMINATION 2023
MATHEMATICS (041)
CLASS: XI
Max.Marks: 80

MARKING SCHEME					
SET	QN.NO	VALUE POINTS			MARKS SPLIT UP
A	1	$\begin{aligned} & \text { (d) } A \cup B= \\ & \{1,2,3,5,9\} \\ & \hline \end{aligned}$	(b) 2	(d) $2^{m n}-1$	1
	2	(a) $\{x:\|x\|=5, x \in N\}$	(d) $-\frac{3}{5}$	(b) $\mathrm{x}=4 \mathrm{n}$	1
	3	(c) $\{1,2,3\},\{7,5\}$	(c) $-1+\mathrm{i}$	(a) $27<x<2$	1
	4	(d) $2^{m n}-1$	(c) 0	(c) $y=(x+2)^{2}+1$	1
	5	(c) 0	(c) 2^{m}	(d) $-\frac{3}{5}$	1
	6	(b) 2	(c) $\mathrm{y}=(\mathrm{x}+2)^{2}+1$	(c) f is a relation but not a function from A to B	1
	7	(b) $\mathrm{x}=4 \mathrm{n}$	(a) $27<x<2$	$\begin{aligned} & \hline \text { (d) } A \cup B= \\ & \{1,2,3,5,9\} \\ & \hline \end{aligned}$	1
	8	(c) $-1+\mathrm{i}$	(a) $\{x:\|x\|=5, x \in N\}$	(a) 373	1
	9	(c) $\mathrm{y}=(\mathrm{x}+2)^{2}+1$	(a) 51	(c) $\frac{-1}{i+1}$	1
	10	(a) 373	(b) $\mathrm{x}=4 \mathrm{n}$	(c) $\{1,2,3\},\{7,5\}$	1
	11	(d) $-\frac{3}{5}$	(d) IV quadrant	(a) 51	1
	12	(a) $27<x<2$	$\begin{aligned} & \hline \text { (d) } A \cup B= \\ & \{1,2,3,5,9\} \\ & \hline \end{aligned}$	(d) IV quadrant	1
	13	(c) 0	(c) $\frac{-1}{i+1}$	(c) 0	1
	14	(a) 51	(c) f is a relation but not a function from A to B	(c) $-1+\mathrm{i}$	1
	15	(c) 2^{m}	(c) $\{1,2,3\},\{7,5\}$	(c) 2^{m}	1

	$\begin{aligned} & =2\left(\sin \frac{\pi}{6}\right)^{2}+\left(\operatorname{cosec}\left(\pi+\frac{\pi}{6}\right)\right)^{2}\left(\cos \frac{\pi}{3}\right)^{2} \\ & =2\left(\frac{1}{2}\right)^{2}+\left(-\operatorname{cosec} \frac{\pi}{6}\right)^{2}\left(\frac{1}{2}\right)^{2}\left(\because \sin \frac{\pi}{6}=\cos \frac{\pi}{3}=\frac{1}{2}\right) \\ & =\frac{2}{4}+(-2)^{2} \times \frac{1}{4}\left(\because \operatorname{cosec} \frac{\pi}{6}=\frac{1}{\sin \frac{\pi}{6}}=\frac{1}{\frac{1}{2}}=2\right) \\ & =\frac{1}{2}+4 \times \frac{1}{4}=\frac{1}{2}+1 \\ & =\frac{3}{2} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
2^{24}	$\begin{aligned} & =\frac{(5+\sqrt{2} i)}{(1-\sqrt{2} i)} \times \frac{(1+\sqrt{2} i)}{(1+\sqrt{2} i)} \\ & =\frac{5+5 \sqrt{2} i+\sqrt{2} i+2(-1)}{1-2(-1)} \\ & =\frac{5+5 \sqrt{2} i+\sqrt{2} i-2}{1+2} \\ & =\frac{5-2+5 \sqrt{2} i+\sqrt{2} i}{3} \\ & =\frac{3+6 \sqrt{2} i}{3} \\ & =\frac{3(1+2 \sqrt{2} i)}{3} \\ & =1+2 \sqrt{2} i \end{aligned}$	11/2 ${ }^{1 / 2}$
25	$\begin{aligned} & \Rightarrow \frac{P(n-1,3)}{P(n, 4)}=\frac{1}{9} \\ & \Rightarrow \frac{(n-1)!}{(n-1-3)!} \times \frac{(n-4)!}{n!}=\frac{1}{9} \\ & \Rightarrow \frac{1}{n}=\frac{1}{9} \ldots \ldots . . A s n=n(n-1)! \\ & \Rightarrow n=9 \end{aligned}$ OR	11/2

	4 vowels and 4 consonants. Total 8 letters. No. of words $=4!\times 4!=24 \times 24=576$ Because 4 vowels are to be in old places and the 4 consonants are to be adjusted in the remaining places.	$1+1$
26	(i) 17 (ii) 19	$\begin{aligned} & \hline 11 / 2 \\ & 11 / 2 \\ & \hline \end{aligned}$
27	$\begin{aligned} & 16-x^{2} \geq 0 \\ & 16 \geq x^{2} \end{aligned}$ Therefore, $\mathrm{x} \leq 4$ or $\mathrm{x} \geq-4$ The domain $[-4,4]$ Range: $f(x)$ is maximum at $x=0, f(x)=4$ And $f(x)$ is minimum at $x=4, f(x)=0$ Range [0,4] OR	1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ finding the values 2 Graph 1
28	$\operatorname{LHS}=\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}$ $=\frac{2 \sin \left(\frac{7 x+5 x}{2}\right) \cos \left(\frac{7 x-5 x}{2}\right)+2 \sin \left(\frac{9 x+3 x}{2}\right) \cos \left(\frac{9 x-3 x}{2}\right)}{2 \cos \left(\frac{7 x+5 x}{2}\right) \cos \left(\frac{7 x-5 x}{2}\right)+2 \cos \left(\frac{9 x+3 x}{2}\right) \cos \left(\frac{9 x-3 x}{2}\right)}$ $=\frac{\sin 6 x \cos x+\sin 6 x \cos 3 x}{\cos 6 x \cos x+\cos 6 x \cos 3 x}=\tan 6 x=\text { RHS }$	$11 / 2$ $11 / 2$

\begin{tabular}{|c|c|c|}
\hline 29 \& As \(\pi<\mathrm{x}<\frac{3 \pi}{2} \Rightarrow \frac{\pi}{2}<\frac{\mathrm{x}}{2}<\frac{3 \pi}{4}\) and \(\sin\) is positive in 2nd quadrant
\[
\begin{gathered}
\sin \frac{x}{2}= \pm \sqrt{\frac{1-\left(-\frac{1}{3}\right)}{2}}= \pm \sqrt{\frac{4}{6}} \quad \therefore \sin \frac{x}{2}=\frac{\sqrt{2}}{\sqrt{3}} \\
\cos \frac{x}{2}= \pm \sqrt{\frac{1+\left(-\frac{1}{3}\right)}{2}}= \pm \sqrt{\frac{1}{3}} \quad \therefore \cos \frac{x}{2}=-\frac{1}{\sqrt{3}} \\
\therefore \tan \frac{x}{2}=-\sqrt{2}
\end{gathered}
\] \& \begin{tabular}{l}
\(11 / 2\) \\
1 \\
\(1 / 2\)
\end{tabular} \\
\hline 30 \& \[
\begin{aligned}
\& \frac{5 x}{4}+\frac{3 x}{8}>\frac{39}{8} \text { and } \frac{2 x-1}{12}-\frac{x-1}{3}<\frac{3 x+1}{4} \\
\& \Rightarrow \frac{10 x+3 x}{8}>\frac{39}{8} \text { and } \frac{2 x-1-4 x+4}{12}<\frac{3 x+1}{4} \\
\& \Rightarrow \frac{13 x}{8}>\frac{39}{8} \text { and } \frac{-2 x+3}{12}<\frac{3 x+1}{4} \\
\& \Rightarrow 13 x>39 \text { and }-2 x+3<9 x+3 \\
\& \Rightarrow x>3 \text { and }-11 x<0 \\
\& \Rightarrow x>3 \text { and } x>0 \\
\& \Rightarrow x \in(3, \infty) \text { and } x \in(0, \infty) \Rightarrow x \in(3, \infty)
\end{aligned}
\] \& 1

1
1

1 \\

\hline 31 \& | $\begin{aligned} & (1+5)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} 5+{ }^{n} C_{2} 5^{2}+{ }^{n} C_{3} 5^{3}+\ldots+{ }^{n} C_{n} 5^{n} \\ & \quad 6^{n}=1+n 5+5^{2}\left({ }^{n} C_{2}+{ }^{n} C_{3} 5+\ldots+{ }^{n} C_{n} 5^{n-2}\right) \\ & \therefore 6^{n}-5 n=1+25 k \\ & \text { where } k={ }^{n} C_{2}+{ }^{n} C_{3} 5+\cdots+{ }^{n} C_{n} 5^{n-2} \end{aligned}$ |
| :--- |
| $\therefore 6^{n}-5 n$ leaves remainder 1 when divided by 25 . |
| OR | \& | $11 / 2$ |
| :--- |
| 1 |
| $1 / 2$ | \\

\hline
\end{tabular}

	$\begin{aligned} & 98^{5}=(100-2)^{5} \\ & =100^{5}-{ }^{5} \mathrm{C}_{1} \cdot 100^{4} \cdot 2+{ }^{5} \mathrm{C}_{2} \cdot 100^{3} 2^{2}-{ }^{5} \mathrm{C}_{3} \cdot 100^{2} \cdot 2^{3}+{ }^{5} \mathrm{C}_{4} \cdot 100 \cdot 2^{4}-{ }^{5} \mathrm{C}_{2} \\ & =100^{5}-10 \cdot 100^{4}+40 \cdot 100^{3}-80 \cdot 100^{2}+80 \cdot 100-32 \\ & =90 \cdot 100^{4}+40 \cdot 100^{3}-80 \cdot 100+8000-32 \\ & =9000000000+40000000-300000+8000-32 \\ & =9040000000-800000+7968 \\ & =9039200000+7968 \\ & =9039207968 \end{aligned}$	$11 / 2$ 1 $1 / 2$
32	a) The number of students who offered all three subjects is 3 b) The number of students who offered mathematics is $15+37+3+7=62$ c) The number of students who did not offer any of the above three subjects is $100-(15+37+7+3+8+17+12)=1$ OR c) The number of students who offered mathematics and statistics but not physics is 7	1 1 2
33	(a) $25 x \leq 100$ (b) $x \leq 4$ (c) $25 x \leq 125 ; x \leq 5$; $\begin{aligned} & \text { OR } \\ & 20 x \leq 160 ; x \leq 8 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \end{aligned}$
34	$\begin{array}{llll}\text { (i) } & 6! & \text { (ii) } 10^{6} & \text { (iii) } 5!\times 2!\end{array}$	1+1+2

35	$\begin{aligned} & \sin ^{2} x+\cos ^{2} x=1 \\ & \cos ^{2} x=1-\frac{9}{25} \\ & \cos x=-\frac{4}{5} \quad \text { Since } x \text { lie in the } 2^{\text {nd }} \text { quadrant so } \cos x \text { is negative } \\ & \sin ^{2} y+\cos ^{2} y=1 \\ & \sin ^{2} y=1=-\cos ^{2} y=1-\frac{144}{169} \\ & \sin y=\frac{5}{13} \quad \text { Since } y \text { lie in the } 2^{\text {nd }} \text { quadrant so siny is positive } \\ & \sin (x+y)=\frac{3}{5} \times \frac{-12}{13}+\frac{-4}{5} \times \frac{5}{13} \\ & =\frac{-36}{65}-\frac{20}{65} \\ & =\frac{-56}{65} \end{aligned}$ OR $\begin{aligned} & =\frac{1+\cos 2 x}{2}+\frac{1+\cos \left(2 x+\frac{2 \pi}{3}\right)}{2}+\frac{1+\cos \left(2 x-\frac{2 \pi}{3}\right)}{2} \\ & =\frac{1}{2}\left[1+\cos 2 x+1+\cos \left(2 x+\frac{2 \pi}{3}\right)+1+\cos \left(2 x-\frac{2 \pi}{3}\right)\right] \\ & =\frac{1}{2}\left[3+\cos 2 x+\cos \left(2 x+\frac{2 \pi}{3}\right)+\cos \left(2 x-\frac{2 \pi}{3}\right)\right] \\ & =\frac{1}{2}\left[3+\cos 2 x+2 \cos \left(\frac{2 x+\frac{2 \pi}{3}+2 x-\frac{2 \pi}{3}}{2}\right) \cdot \cos \left(\frac{2 x+\frac{2 \pi}{3}-\left(2 x-\frac{2 \pi}{3}\right)}{2}\right)\right. \\ & =\frac{1}{2}\left[3+\cos 2 x+2 \cos 2 x \cos \left(\pi-\frac{\pi}{3}\right)\right] \\ & =\frac{1}{2}\left[3+\cos 2 x+2 \cos 2 x\left(-\cos \left(\frac{\pi}{3}\right)\right)\right](\text { As } \cos (\pi-\theta)=-\cos \theta) \\ & =\frac{1}{2}\left[3+\cos 2 x+2 \cos 2 x\left(-\frac{1}{2}\right)\right] \\ & =\frac{1}{2}[3+\cos 2 x-\cos 2 x] \\ & =\frac{1}{2}[3+0] \\ & =\frac{3}{2} \end{aligned}$	

	37	(i) Total number of ways $={ }^{4} \mathrm{C}_{3} \times{ }^{9} \mathrm{C}_{4}$ $\begin{aligned} & =\frac{4!}{3!(4-3)!} \times \frac{9!}{4!(9-4)!} \\ & =\frac{4!}{3!1!} \times \frac{9!}{4!(5)!} \\ & =\frac{9!}{3!(5)!}=\frac{9 \times 8 \times 7 \times 6 \times 5!}{(3 \times 2 \times 1) \times(5)!}=\mathbf{5 0 4} \end{aligned}$ (ii) atleast 3 girls This means that there can be either 3 or 4 girls in the committee of 7 . - No. of ways of to selecting 3 girls from 4 and 4 boys from 9 to form a committee of $7={ }^{4} \mathrm{C}_{3} \times{ }^{9} \mathrm{C}_{4}=4 \times 126=504$ - No. of ways of to selecting 4 girls from 4 and 3 boys from 9 to form a committee of $7={ }^{4} \mathrm{C}_{4} \times{ }^{9} \mathrm{C}_{3}=1 \times 84=84$ The total no. of ways $=504+84=588$. (iii) atmost 3 girls This means that there can be 0 or 1 or 2 or 3 girls in the committee of 7 . The total no. of ways $=36+336+756+504=1632$ OR The alphabetical order of the letters of the word RACHIT is: A, C, H, I, R, T. Number of words beginning with $\mathrm{A}=5$! Number of words beginning with $\mathrm{C}=5$! Number of words beginning with $\mathrm{H}=5$! Number of words beginning with $1=5$! Clearly, the first word beginning with R is RACHIT. \therefore Rank of the word RACHIT in dictionary $=4 \times 5!+1=4 \times 120+1=481$.	1 2 2 $1 \times 4=4$
	38	Using Binomial theorem, $\begin{aligned} & (\mathrm{x}+1)^{6}={ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{x}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}+{ }^{6} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{5} \mathrm{x}+{ }^{6} \mathrm{C}_{6} \\ & (\mathrm{x}-1)^{6}={ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{x}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}-{ }^{6} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}-{ }^{6} \mathrm{C}_{5} \mathrm{x}+{ }^{6} \mathrm{C}_{6} \\ & \therefore(\mathrm{x}+1)^{6}+(\mathrm{x}-1)^{6}=2\left[{ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{6}\right]=2\left[\mathrm{x}^{6}+15 \mathrm{x}^{4}+15 \mathrm{x}^{2}+1\right] \end{aligned}$ By putting $x=\sqrt{2}$ we get, $\begin{aligned} & (\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}=2\left[(\sqrt{2})^{6}+15(\sqrt{2})^{4}+15(\sqrt{2})^{2}+1\right] \\ & =2(8+15 \times 4+15 \times 2+1) \\ & =2(8+60+30+1) \\ & =2(99) \\ & =198 \end{aligned}$	1 1 1 1 $1 / 2$ $1 / 2$

Set B	22	$\mathrm{X}=1$ and $\mathrm{y}=3$	2
	23	$\mathrm{X}=\mathrm{Y}$ they are equal sets	2
	28	$(-\infty,-2)$	Same like set A
	30	$\begin{aligned} & \text { LHS }=\sin 3 x+\sin 2 x-\sin x \\ & =2 \sin \left(\frac{3 x+2 x}{2}\right) \cos \left(\frac{3 x-2 x}{2}\right)-2 \sin \frac{x}{2} \cos \frac{x}{2} \\ & =2 \cos \frac{x}{2}\left(\sin \frac{5 x}{2}-\sin \frac{x}{2}\right)=2 \cos \frac{x}{2} \cos \frac{3 x}{2} \sin x \\ & =4 \sin x \cos \frac{x}{2} \cos \frac{3 x}{2}=\text { RHS } \end{aligned}$	$11 / 2$ $11 / 2$
	31	Domain $[-3,3]$ Range [0,3]	Same like set A
	35	$\begin{array}{cl} C(52,4) & 2,70,725 \\ \text { (i) } & 2860 \\ \text { (ii) } & 13^{4} \\ \text { (iii) } & 495 \\ \text { (iv) } & 105625 \\ \text { (v) } & 29900 \end{array}$	$\begin{gathered} 1 \\ 1 / 2 \\ 1 \\ 1 \\ 1 / 2 \\ 1 \end{gathered}$
	OR	$4^{4{ }^{\text {TH }}}$ word is NAAGI. 50^{TH} word is NAAIG	Same like set A
	36	Using Binomial theorem, $\begin{aligned} & (\mathrm{x}+1)^{6}={ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{x}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}+{ }^{6} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{5} \mathrm{x}+{ }^{6} \mathrm{C}_{6} \\ & (\mathrm{x}-1)^{6}={ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{x}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}-{ }^{6} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}-{ }^{6} \mathrm{C}_{5} \mathrm{x}+{ }^{6} \mathrm{C}_{6} \\ & \therefore(\mathrm{x}+1)^{6}+(\mathrm{x}-1)^{6}=2\left\lfloor{ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{6}\right\rfloor=2\left\lfloor\mathrm{x}^{6}+15 \mathrm{x}^{4}+15 \mathrm{x}^{2}+1\right\rfloor \end{aligned}$ By putting $x=\sqrt{3}$ we get, final answer as 416	
C		Refer answers both in Set A and Set B	

