SET ABC

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION 2023 MATHEMATICS (041)

CLASS: XI

Max.Marks: 80

			MARKING SCHEME		
SET	QN.NO	VALUE POINTS			MARKS SPLIT UP
А	1	$(d)A \cup B =$ {1, 2, 3, 5, 9}	(b) 2	(d) $2^{mn} - 1$	1
	2	$(a)\{x: x = 5, x \in N\}$	(d) $-\frac{3}{5}$	(b) x = 4n	1
	3	(c) {1, 2, 3}, {7, 5}	(c) -1 + i	(a) $27 < x < 2$	1
	4	(d) $2^{mn} - 1$	(c) 0	(c) $y = (x + 2)^2 + 1$	1
	5	(c) 0	(c) 2 ^{<i>m</i>}	(d) $-\frac{3}{5}$	1
	6	(b) 2	(c) $y = (x + 2)^2 + 1$	(c) f is a relation but not a function from A to B	1
	7	(b) $x = 4n$	(a) $27 < x < 2$	$(d)A \cup B = \{1, 2, 3, 5, 9\}$	1
	8	(c) -1 + i	$(a)\{x: x = 5, x \in N\}$	(a) 373	1
	9	(c) $y = (x + 2)^2 + 1$	(a) 51	$(c) \frac{-1}{i+1}$	1
	10	(a) 373	(b) $x = 4n$	(c) {1, 2, 3}, {7, 5}	1
	11	(d) $-\frac{3}{5}$	(d) IV quadrant	(a) 51	1
	12	(a) $27 < x < 2$	(d) $A \cup B =$ {1, 2, 3, 5, 9}	(d) IV quadrant	1
	13	(c) 0	$(c) \frac{-1}{i+1}$	(c) 0	1
	14	(a) 51	(c) f is a relation but not a function from A to B	(c) -1 + i	1
	15	(c) 2^m	(c) $\{1, 2, 3\}, \{7, 5\}$	(c) 2^{m}	1

16	(c) f is a relation but not a function from A to B	(c) 0	(a){ $x : x = 5, x \in N$ }	1
17	(d) IV quadrant	(a) 373	(c) 0	1
18	(c) $\frac{-1}{i+1}$	(d) $2^{mn} - 1$	(b) 2	1
19	(a) Both A and R are true, and R is the correct explanation of A.	(c) A is true but R is false.	(a) Both A and R are true, and R is the correct explanation of A	1
20	(c) A is true but R is false.	(a) Both A and R are true, and R is the correct explanation of A	(c) A is true but R is false.	1
21	Smallest set = $\{3, 5, 9\}$ Largest set = $\{1, 2, 3, 5, 9\}$	9}	1	1
22	X = 3; y = -1	,		1 + 1
23	LHS = cos 510° cos 33 = cos(360° + 150°) cos	30° + sin 390° cos 120° s(360° – 30°) + sin(360° +	- 30°) x cos(180° – 60°)	1⁄2
	$= \cos (180^{\circ} - 30^{\circ}) \cos 30^{\circ} + \frac{1}{2}$ $= -\cos 30^{\circ} \cos 30^{\circ} + \frac{1}{2}$	$30^{\circ} + \sin 30^{\circ} \cos 60^{\circ}$ $30^{\circ} \times (\frac{-1}{2})$		1⁄2
	$= -\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} -$ $= -\frac{3}{4} - \frac{1}{4}$	$-rac{1}{2} imesrac{1}{2}$		1⁄2
	$= \frac{\frac{4}{-3-1}}{4}$			1⁄2
	OR			

	$= 2(\sin \frac{\pi}{6})^2 + (\operatorname{cosec}(\pi + \frac{\pi}{6}))^2 (\cos \frac{\pi}{3})^2$	1/2
	$= 2 \left(\frac{1}{2}\right)^2 + (-\csc \frac{\pi}{6})^2 \left(\frac{1}{2}\right)^2 (\because \sin \frac{\pi}{6} = \cos \frac{\pi}{3} = \frac{1}{2})$	1/2
	$=\frac{2}{4} + (-2)^2 \times \frac{1}{4} (:: \operatorname{cosec} \frac{\pi}{6} = \frac{1}{\sin \frac{\pi}{6}} = \frac{1}{\frac{1}{2}} = 2)$	1⁄2
	$=\frac{1}{2} + 4 \times \frac{1}{4} = \frac{1}{2} + 1$	
	$=\frac{3}{2}$	1/2
24	$= \frac{(5+\sqrt{2}i)}{(1-\sqrt{2}i)} \times \frac{(1+\sqrt{2}i)}{(1+\sqrt{2}i)}$	1⁄2
	$= \frac{5 + 5\sqrt{2}i + \sqrt{2}i + 2(-1)}{1 - 2(-1)}$	1⁄2
	$= \frac{5+5\sqrt{2}i+\sqrt{2}i-2}{1+2}$	
	$=\frac{5-2+5\sqrt{2}i+\sqrt{2}i}{3}$	1/2
	$=\frac{3+6\sqrt{2}i}{3}$	
	$=\frac{3\left(1+2\sqrt{2}i\right)}{3}$	
	$= 1 + 2\sqrt{2}i$	1/2
25	$\Rightarrow \frac{P(n-1,3)}{P(n,4)} = \frac{1}{9}$	1/2
	$\Rightarrow \frac{(n-1)!}{(n-1-3)!} \times \frac{(n-4)!}{n!} = \frac{1}{9}$	1
	$\Rightarrow \frac{1}{n} = \frac{1}{9} \dots As \ n = n(n-1)!$	1/2
	\Rightarrow n = 9	
	OR	

	4 vowels and 4 consonants. Total 8 letters.	1 + 1
	No. of words = $4! \times 4! = 24 \times 24 = 576$	
	Because 4 vowels are to be in old places and the 4 consonants are to be	
	adjusted in the remaining places.	
26	(i) 17 (ii) 19	1 ¹ / ₂ 1 ¹ / ₂
27	$16 - x^2 \ge 0$	1
	$16 \ge x^2$	1/2
	Therefore, $x \le 4$ or $x \ge -4$ The domain[-4, 4]	1/2
	Range: $f(x)$ is maximum at $x = 0$, $f(x) = 4$	1/2
	And $f(x)$ is minimum at $x = 4$, $f(x) = 0$ Range $[0, 4]$	1/2
	$\begin{array}{c} OR \\ & & & \\ & & $	finding the values 2 Graph 1
28	LHS = $\frac{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}$	
	$=\frac{2\sin\left(\frac{7x+5x}{2}\right)\cos\left(\frac{7x-5x}{2}\right)+2\sin\left(\frac{9x+3x}{2}\right)\cos\left(\frac{9x-3x}{2}\right)}{2\cos\left(\frac{7x+5x}{2}\right)\cos\left(\frac{7x-5x}{2}\right)+2\cos\left(\frac{9x+3x}{2}\right)\cos\left(\frac{9x-3x}{2}\right)}$	1 1/2
	$= \frac{\sin 6x \cos x + \sin 6x \cos 3x}{\cos 6x \cos x + \cos 6x \cos 3x} = \tan 6x = RHS$	1 1/2

29	As $\pi < x < \frac{3\pi}{2} \Rightarrow \frac{\pi}{2} < \frac{x}{2} < \frac{3\pi}{4}$ and sin is positive in 2nd quadrant	
	$\sin\frac{x}{2} = \pm\sqrt{\frac{1-(-\frac{1}{3})}{2}} = \pm\sqrt{\frac{4}{6}} \qquad \therefore \sin\frac{x}{2} = \frac{\sqrt{2}}{\sqrt{3}}$	1 1⁄2
	$\cos \frac{x}{2} = \pm \sqrt{\frac{1 + \left(-\frac{1}{3}\right)}{2}} = \pm \sqrt{\frac{1}{3}} \qquad \therefore \cos \frac{x}{2} = -\frac{1}{\sqrt{3}}$	1
	$\therefore \tan \frac{\mathbf{x}}{2} = -\sqrt{2}$	1/2
30	$\begin{array}{c} \frac{5x}{4} + \frac{3x}{8} > \frac{39}{8} \text{and} \frac{2x-1}{12} - \frac{x-1}{3} < \frac{3x+1}{4} \\ \Rightarrow \frac{10x+3x}{8} > \frac{39}{8} \text{and} \frac{2x-1-4x+4}{12} < \frac{3x+1}{4} \\ \Rightarrow \frac{13x}{8} > \frac{39}{8} \text{and} \frac{-2x+3}{12} < \frac{3x+1}{4} \\ \Rightarrow 13x > 39 \text{and} -2x+3 < 9x+3 \\ \Rightarrow x > 3 \text{and} -11x < 0 \\ \Rightarrow x > 3 \text{and} x > 0 \\ \Rightarrow x \in (3,\infty) \text{and} x \in (0,\infty) \Rightarrow x \in (3,\infty) \end{array}$	1
	$< \qquad \qquad$	1
31	$(1+5)^{n} = {}^{n}C_{0} + {}^{n}C_{1}5 + {}^{n}C_{2}5^{2} + {}^{n}C_{3}5^{3} + \dots + {}^{n}C_{n}5^{n}$ $6^{n} = 1 + n5 + 5^{2}({}^{n}C_{2} + {}^{n}C_{3}5 + \dots + {}^{n}C_{n}5^{n-2})$	1 1/2
	:. $6^{n} - 5n = 1 + 25k$ where $k = {}^{n}C_{2} + {}^{n}C_{3}5 + \dots + {}^{n}C_{n}5^{n-2}$	1
	∴ 6 ⁿ - 5n leaves remainder 1 when divided by 25.	1⁄2
	OR	

	$98^5 = (100 - 2)^5$	1 1/2
	$= 100^{5} - {}^{5}C_{1} \cdot 100^{4} \cdot 2 + {}^{5}C_{2} \cdot 100^{3} 2^{2} - {}^{5}C_{3} \cdot 100^{2} \cdot 2^{3} + {}^{5}C_{4} \cdot 100 \cdot 2^{4} - {}^{5}C_{2}$	
	$= 100^{5} - 10.100^{4} + 40.100^{3} - 80.100^{2} + 80.100 - 32$	1
	$= 90.100^4 + 40.100^3 - 80.100 + 8000 - 32$	
	= 900000000 + 40000000 - 300000 + 8000 - 32	1/2
	= 904000000 - 800000 + 7968	
	= 9039200000 + 7968	
	= 9039207968.	
32	a) The number of students who offered all three subjects is 3	1
	b) The number of students who offered mathematics is 15+37+3+7=62	
	c) The number of students who did not offer any of the above three subjects	1
	is 100–(15+37+7+3+8+17+12) =1	
	OR	2
	c) The number of students who offered mathematics and statistics but not	
	physics is 7	
33	(a) $25x \le 100$ (b) $x \le 4$	1
	(c) $25x \le 125$; $x \le 5$;	2
	OP	
	$20x \le 160; x \le 8$	
	0 8	
34	(i) 6! (ii) 10^6 (iii) 5! X 2! OR 5! = 120	1+1+2

$$\begin{array}{|c|c|c|c|c|} \hline & 36 \\ & \Rightarrow (x-iy)^2 = \frac{a-ib}{c-id} \times \frac{c+id}{c+id} = \frac{(ac+bd)-i(bc-ad)}{c^2+d^2} \\ & \Rightarrow (x^2-y^2)-i(2xy) = \left(\frac{ac+bd}{c^2+d^2}\right) - i\left(\frac{bc-ad}{c^2+d^2}\right) \\ & Equating real and imaginary parts on both sides, we get \\ & x^2-y^2 = \frac{ac+bd}{c^2+d^2} \quad and 2xy = \frac{bc-ad}{c^2+d^2} \\ & Now, (x+iy)^2 = (x^2-y^2) + i(2xy) = \left(\frac{ac+bd}{c^2+d^2}\right) + i\left(\frac{bc-ad}{c^2+d^2}\right) \\ & \Rightarrow (x+iy)^2 = \frac{(ac+bd)+i(bc-ad)}{c^2+d^2} = \frac{(a+ib)(c-id)}{(c+id)(c-id)} = \frac{a+ib}{c+id} \\ & \Rightarrow x+iy = \sqrt{\frac{a+ib}{c^2+id}} \\ & LHS = (x^2+y^2)^2 = [(x-iy)(x+iy)]^2 = (x-iy)^2(x+iy)^2 \\ & = \left(\frac{a-ib}{c-id}\right) \left(\frac{a+ib}{c+id}\right) \\ & = RHS \end{array}$$

37	(i) Total number of ways = ${}^{4}C_{3} \times {}^{9}C_{4}$	1
	$=\frac{4!}{3!(4-3)!}\times\frac{9!}{4!(9-4)!}$	
	$=\frac{4!}{3!1!} \times \frac{9!}{4!(5)!}$	
	$= \frac{9!}{3!(5)!} = \frac{9 \times 8 \times 7 \times 6 \times 5!}{(3 \times 2 \times 1) \times (5)!} = 504$	2
	(ii) atleast 3 girls	
	This means that there can be either 3 or 4 girls in the committee of 7.	
	 No. of ways of to selecting 3 girls from 4 and 4 boys from 9 to form a committee of 7 = ⁴C₃ × ⁹C₄ = 4 × 126 = 504 No. of ways of to selecting 4 girls from 4 and 3 boys from 9 to form a committee of 7 = 40, × 80, = 1 × 84 = 84 	
	The total no. of ways = $504 + 84 = 588$. (iii) atmost 3 girls	
	This means that there can be 0 or 1 or 2 or 3 girls in the committee of 7. The total no. of ways = 36 + 336 + 756 + 504 = 1632 OR	2
	The alphabetical order of the letters of the word RACHIT is: A, C, H, I, R, T. Number of words beginning with $A = 5$! Number of words beginning with $C = 5$! Number of words beginning with $H = 5$!	1 x 4 = 4
	Number of words beginning with $1 = 5!$	
	Clearly, the first word beginning with R is RACHIT. \therefore Rank of the word RACHIT in dictionary = $4 \times 5! + 1 = 4 \times 120 + 1 = 481$.	1
38	Using Binomial theorem,	1
	$(x+1)^{6} = {}^{6}C_{0}x^{6} + {}^{6}C_{1}x^{5} + {}^{6}C_{2}x^{4} + {}^{6}C_{3}x^{3} + {}^{6}C_{4}x^{2} + {}^{6}C_{5}x + {}^{6}C_{6}$	1
	$(x-1)^{6} = C_{0}x^{4} - C_{1}x^{4} + C_{2}x^{4} - C_{3}x^{4} + C_{4}x^{4} - C_{5}x + C_{6}$ $(x+1)^{6} + (x-1)^{6} - 2\Gamma^{6}C_{2}x^{6} + C_{2}x^{4} + C_{3}x^{2} + C_{4}x^{2} - C_{5}x + C_{6}x^{4} + 15x^{2} + 11$	1
	By putting $x = \sqrt{2}$ we get,	1
	$(\sqrt{2}+1)^6 + (\sqrt{2}-1)^6 = 2[(\sqrt{2})^6 + 15(\sqrt{2})^4 + 15(\sqrt{2})^2 + 1]$	1
	$= 2(8 + 15 \times 4 + 15 \times 2 + 1)$	16
	=2(8+60+30+1)	72
	= 2(99) = 198	1/2
	170	

Set 22 B $23 X = 1 ext{ and } y = 3$ $23 X = Y ext{ they are equal sets}$ $28 (-\infty, -2)$ $30 LHS = \sin 3x + \sin 2x - \sin x$ $= 2 \sin \left(\frac{3x + 2x}{2}\right) \cos \left(\frac{3x - 2x}{2}\right) - 2 \sin \frac{x}{2} \cos \frac{x}{2}$ $= 2 \cos \frac{x}{2} \left(\sin \frac{5x}{2} - \sin \frac{x}{2}\right) = 2 \cos \frac{x}{2} \cos \frac{3x}{2} \sin x$ $= 4 \sin x \cos \frac{x}{2} \cos \frac{3x}{2} = RHS$ $31 Domain [-3, 3]$ Range [0, 3] $35 C (52,4) = 2,70,725$	2 2 Same like set
$23 X = Y ext{ they are equal sets}$ $28 (-\infty, -2)$ $30 LHS = \sin 3x + \sin 2x - \sin x$ $= 2 \sin \left(\frac{3x + 2x}{2}\right) \cos \left(\frac{3x - 2x}{2}\right) - 2 \sin \frac{x}{2} \cos \frac{x}{2}$ $= 2 \cos \frac{x}{2} \left(\sin \frac{5x}{2} - \sin \frac{x}{2}\right) = 2 \cos \frac{x}{2} \cos \frac{3x}{2} \sin x$ $= 4 \sin x \cos \frac{x}{2} \cos \frac{3x}{2} = RHS$ $31 Domain [-3, 3] Range [0, 3]$ $35 C (52,4) = 2,70,725$	2 Same like set
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Same like set
$30 \qquad \text{LHS} = \sin 3x + \sin 2x - \sin x$ $= 2 \sin \left(\frac{3x + 2x}{2}\right) \cos \left(\frac{3x - 2x}{2}\right) - 2 \sin \frac{x}{2} \cos \frac{x}{2}$ $= 2 \cos \frac{x}{2} \left(\sin \frac{5x}{2} - \sin \frac{x}{2}\right) = 2 \cos \frac{x}{2} \cos \frac{3x}{2} \sin x$ $= 4 \sin x \cos \frac{x}{2} \cos \frac{3x}{2} = \text{RHS}$ $31 \qquad \text{Domain [-3, 3]}$ Range [0, 3] $35 \qquad \text{C } (52,4) = 2,70,725$ $(3) \qquad 3860$	IA
$= 2 \sin\left(\frac{3x+2x}{2}\right) \cos\left(\frac{3x-2x}{2}\right) - 2 \sin\frac{x}{2} \cos\frac{x}{2}$ $= 2 \cos\frac{x}{2} \left(\sin\frac{5x}{2} - \sin\frac{x}{2}\right) = 2 \cos\frac{x}{2} \cos\frac{3x}{2} \sin x$ $= 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2} = \text{RHS}$ 31Domain [-3, 3] Range [0, 3] $35 \text{C } (52,4) = 2,70,725$	
$= 2\cos\frac{x}{2}\left(\sin\frac{5x}{2} - \sin\frac{x}{2}\right) = 2\cos\frac{x}{2}\cos\frac{3x}{2}\sin x$ = $4\sin x \cos\frac{x}{2}\cos\frac{3x}{2} = RHS$ 31 Domain [-3, 3] Range [0, 3] 35 C (52,4) = 2,70,725	11/2
$= 4 \sin x \cos \frac{x}{2} \cos \frac{3x}{2} = \text{RHS}$ $31 \qquad \text{Domain [-3, 3]} \\ \text{Range [0, 3]} \\ 35 \qquad \text{C } (52,4) = 2,70,725 \\ (i) \qquad 2860 \\ (i) \qquad $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11/2
$\begin{array}{c c} & \text{Range [0, 3]} \\ \hline 35 & \text{C} (52,4) = 2,70,725 \\ \hline (i) & 2860 \end{array}$	Same like set
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
OR 49 TH word is NAAGI. 50 TH word is NAAIG	Same like set
$\begin{array}{ c c c c c c c c }\hline & 36 & Using Binomial theorem, \\ & (x+1)^6 = {}^6 C_0 x^6 + {}^6 C_1 x^5 + {}^6 C_2 x^4 + {}^6 C_3 x^3 + {}^6 C_4 x^2 + {}^6 C_5 x + {}^6 C_6 \\ & (x-1)^6 = {}^6 C_0 x^6 - {}^6 C_1 x^5 + {}^6 C_2 x^4 - {}^6 C_3 x^3 + {}^6 C_4 x^2 - {}^6 C_5 x + {}^6 C_6 \\ \hline \end{array}$	
$\therefore (x+1)^6 + (x-1)^6 = 2[{}^6C_0x^6 + {}^6C_2x^4 + {}^6C_4x^2 + {}^6C_6] = 2[x^6 + 15x^4 + 15x^2 + 15x^6]$	1] 3
final answer as 416	2
C Refer answers both in Set A and Set B	