

## INDIAN SCHOOL MUSCAT FIRST PERIODIC TEST

#### **CHEMISTRY**

CLASS: XI

Sub.Code: 043

Time Allotted: 50mts.

21.05.2023

Max .Marks: 20

#### **GENERAL INSTRUCTIONS:**

| a) | All | questions | are | com | vulsory. |
|----|-----|-----------|-----|-----|----------|
|----|-----|-----------|-----|-----|----------|

- b) Mark for each question is indicated against the question.
- The line spectrum of hydrogen obtained in the visible region corresponds to 1 1. (b) Balmer series (a) Lyman series (d) Brackett series (c) Paschen series 1 According to Bohr's theory, the angular momentum of an electron in 3rd orbit is 2. (d)  $9h/2 \pi$ (a)  $3h/\pi$ (b)  $6h/\pi$ (c)  $1.5h/\pi$ What is the maximum number of emission lines obtained when the excited electrons 1 of a hydrogen atom in n = 3 drop to ground state n = 1?
  - (a) 10
- (b) 6
- (c) 12
- (d) 3
- 4. As per de Broglie's formula, a macroscopic particle of mass 100 g and moving at a velocity of 1 ms<sup>-1</sup> will have a wavelength
  - (a)  $6.626 \times 10^{-33} \,\mathrm{m}$

(b) 6.626 x 10<sup>-29</sup> m

(c) 6.626 x 10<sup>-31</sup> m

(d) 6.626 x 10<sup>-32</sup> m

| 5.  | The transition in He $^+$ spectrum from $n=4$ to $n=2$ corresponds to which transition in the H spectrum?                                                      | 1 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | (a) $n = 2$ to $n = 1$ (b) $n = 3$ to $n = 1$                                                                                                                  |   |
|     | (c) $n = 3$ to $n = 2$ (d) $n = 4$ to $n = 2$                                                                                                                  |   |
|     | In the following questions (Q.No 6 & Q.No 7) consist of two statements – Assertion (A) and Reason (R) .Choose the correct answer out of the following choices. |   |
|     | (a) Assertion and reason both are correct and reason is the correct explanation for assertion.                                                                 |   |
| ¥.  | (b) Assertion and reason both are correct but reason is not the correct explanation for assertion.                                                             |   |
|     | (d) Assertion is wrong but reason is correct.                                                                                                                  |   |
|     | (e) Both assertion and reason are wrong.                                                                                                                       |   |
| 6.  | <b>Assertion:</b> Hydrogen has one electron in its orbit but it produces several spectral lines.                                                               | 1 |
|     | Reason: There are many excited energy levels available in the atom.                                                                                            |   |
| 7.  | <b>Assertion:</b> The energy of the electron in a hydrogen atom has a negative sign for all possible orbits.                                                   | 1 |
|     | Reason: Energy of an electron close to nucleus is taken as zero.                                                                                               |   |
| 8.  | Why Bohr's orbits are called energy levels?                                                                                                                    | 1 |
| 9.  | Which of the following has lowest frequency?                                                                                                                   | 1 |
|     | UV rays, X rays, Microwaves, Infra-red rays                                                                                                                    |   |
| 10. | Define the term wavelength.                                                                                                                                    | 1 |
| 11. | Define electromagnetic radiation.                                                                                                                              | 1 |
| 12. | The radius of first Bohr orbit of hydrogen atom is 0.529A <sup>0</sup> . Calculate the radius of the second orbit of He <sup>+</sup> ion.                      | 2 |
| 13. | Calculate the energy of photon of light having frequency of 3 x $10^{15}$ s <sup>-1</sup> . (h = $6.626$ x $10^{-34}$ J s)                                     | 2 |
| 14. | Write any two limitations of Bohr's model.                                                                                                                     | 2 |

(ii) State Heisenberg's Uncertainty principle.

\*\*\*\*\*

3



## INDIAN SCHOOL MUSCAT FIRST PERIODIC TEST

### **CHEMISTRY**

CLASS: XI

Sub.Code: 043

Time Allotted: 50mts.

21.05.2023

Max .Marks: 20

#### **GENERAL INSTRUCTIONS:**

a) All questions are compulsory.

(c)  $5.4 \times 10^3 \text{ ms}^{-1}$ 

| b) Mark for each question is indicated against the question. |  |
|--------------------------------------------------------------|--|
|--------------------------------------------------------------|--|

The line spectrum of hydrogen obtained in the UV region corresponds to 1 1. (b) Balmer series (a) Lyman series (d) Brackett series (c) Paschen series 1 2. What is the maximum number of emission lines obtained when the excited electrons of a hydrogen atom in n = 6 drop to ground state n = 1? (a) 10 (c) 12(d) 30(b) 15 According to Bohr's theory, the angular momentum of an electron in 4th orbit is 1 3. (a)  $3h/\pi$ (b)  $4h/\pi$ (c)  $2h/\pi$ (d)  $h/2\pi$ The de Broglie wave length of an electron is 600 nm. The velocity of the electron is: 1 4. (b)  $1.2 \times 10^5 \,\mathrm{ms}^{-1}$ (a)  $1.8 \times 10^3 \,\mathrm{ms}^{-1}$ 

(d)  $1.2 \times 10^3 \text{ ms}^{-1}$ 

| 5.  | The transition in He <sup>+</sup> spectrum from $n = 4$ to $n = 2$ corresponds to which transition in the H spectrum? |                                                                                 |   |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---|--|--|
|     | (a) $n = 2$ to $n = 1$                                                                                                | (b) $n = 3$ to $n = 1$                                                          |   |  |  |
|     | (c) $n = 3$ to $n = 2$                                                                                                | (d) $n = 4$ to $n = 2$                                                          |   |  |  |
|     | In The following questions (Q.No 6 & Q.No (A) and Reason (R). Choose the correct as                                   | No 7) consist of two statements – Assertion nswer out of the following choices. |   |  |  |
|     | (a) Assertion and reason both are correct and reason is the correct explanation for assertion.                        |                                                                                 |   |  |  |
|     | (b) Assertion and reason both are correct for assertion.                                                              | but reason is not the correct explanation                                       |   |  |  |
|     | (c) Assertion is correct but reason is wron                                                                           | ng.                                                                             |   |  |  |
|     | (d) Assertion is wrong but reason is correct.                                                                         |                                                                                 |   |  |  |
|     | (e) Both assertion and reason are wrong.                                                                              |                                                                                 |   |  |  |
| 6.  | <b>Assertion:</b> Hydrogen has one electron in lines.                                                                 | its orbit but it produces several spectral                                      | 1 |  |  |
|     | Reason: There are many excited energy                                                                                 | evels available.                                                                |   |  |  |
| 7.  | <b>Assertion:</b> The energy of the electron in possible orbits.                                                      | a hydrogen atom has a negative sign for all                                     | 1 |  |  |
|     | Reason: Energy of an electron close to no                                                                             | ucleus is taken as zero.                                                        |   |  |  |
| 8.  | Which transitions between Bohr's orbit of series?                                                                     | corresponds to second line in the Balmer                                        | 1 |  |  |
| 9.  | Which of the following ha <del>ve</del> shortest wa                                                                   | velength?                                                                       | 1 |  |  |
|     | Microwave, Infra-red rays, Long radio w                                                                               | vaves, X-rays                                                                   |   |  |  |
| 10. | Define the term wavenumber.                                                                                           |                                                                                 | 1 |  |  |
| 11. | Define electromagnetic radiation.                                                                                     |                                                                                 | 1 |  |  |
| 12. | The radius of first Bohr orbit of hydroge the third orbit of Li <sup>2+</sup> ion.                                    | n atom is $0.529 A^0$ . Calculate the radius of                                 | 2 |  |  |
| 13. | The wave length of a spectral line of cest the line. $(c = 3 \times 10^8 \text{ ms}^{-1})$                            | um is 820 nm. Calculate the frequency of                                        | 2 |  |  |
|     |                                                                                                                       |                                                                                 |   |  |  |

5.

14. Write any two limitations of Bohr's model.
15. (i) An electron has a speed of 500 ms<sup>-1</sup> with uncertainty of 0.02%. What is the uncertainty in locating its position?
(Mass of electron = 9.1 x 10<sup>-31</sup>kg, h = 6.626 x 10<sup>-34</sup> J s)
(ii) State Heisenberg's uncertainty principle.





# INDIAN SCHOOL MUSCAT FIRST PERIODIC TEST

## **CHEMISTRY**

|    | Λ.  | CC. | -          |
|----|-----|-----|------------|
| ۱. | . A | 77  | $\Delta I$ |

Sub.Code: 043

Time Allotted: 50mts.

21.05.2023

Max .Marks: 20

## GE

(a) 6.626 x 10<sup>-33</sup> m

(c) 6.626 x 10<sup>-31</sup> m

| ENE | RAL INSTRUCTIONS:                                                                                                                             |                |                     |                                         |   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|-----------------------------------------|---|
| a)  | All questions are comp                                                                                                                        | ılsory.        |                     |                                         |   |
| b)  | Mark for each question                                                                                                                        | is indicated a | gainst the question | •                                       |   |
| 1.  | Paschen series of hydrospectrum?                                                                                                              | ogen spectrun  | n is under which po | ortion of electromagnetic               | 1 |
|     | (a) Visible                                                                                                                                   |                | (b) IR              |                                         |   |
|     | (c) Uv                                                                                                                                        |                | (d) Microwave       |                                         |   |
| 2.  | 2. According to Bohr's theory, the angular momentum of an electron in 2 <sup>nd</sup> orbit is                                                |                |                     | an electron in 2 <sup>nd</sup> orbit is | 1 |
|     | (a) 4h/π                                                                                                                                      | (b) 2h/11      | (c) h/π             | (d) h/2π                                |   |
| 3.  | What is the maximum number of emission lines obtained when the excited electrons of a hydrogen atom in $n = 4$ drop to ground state $n = 1$ ? |                |                     | 1                                       |   |
|     | (a) 10                                                                                                                                        | (b) 6          | (c) 12              | (d) 3                                   |   |
| 4.  | As per de Broglie's for<br>velocity of 1 ms <sup>-1</sup> will l                                                                              |                | <del>-</del> - ·    | nass 100 g and moving at a              | 1 |

(b)  $6.626 \times 10^{-29} \text{ m}$ 

(d) 6.626 x 10<sup>-32</sup> m



|                                                                                                | The transition in He <sup>+</sup> spectrum from $n = 4$ to $n = 2$ corresponds to which transition 1 in the H spectrum?                                                 |                                                             |             |  |  |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|--|--|--|
|                                                                                                | (a) $n = 2$ to $n = 1$                                                                                                                                                  | (b) $n = 3$ to $n = 1$                                      |             |  |  |  |
|                                                                                                | (c) $n = 3$ to $n = 2$                                                                                                                                                  | (d) $n = 4$ to $n = 2$                                      |             |  |  |  |
|                                                                                                | In the following questions (Q.No 6 & (A) and Reason (R) .Choose the correct                                                                                             |                                                             | sertion     |  |  |  |
| (a) Assertion and reason both are correct and reason is the correct explanation for assertion. |                                                                                                                                                                         |                                                             |             |  |  |  |
|                                                                                                | (b) Assertion and reason both are correfor assertion.                                                                                                                   | ect but reason is not the correct explan                    | ation       |  |  |  |
|                                                                                                | (c) Assertion is correct but reason is wrong.                                                                                                                           |                                                             |             |  |  |  |
|                                                                                                | (d) Assertion is wrong but reason is correct.                                                                                                                           |                                                             |             |  |  |  |
|                                                                                                | (e) Both assertion and reason are wrong.                                                                                                                                |                                                             |             |  |  |  |
| 6.                                                                                             | <b>Assertion:</b> Hydrogen has one electron lines.                                                                                                                      | in its orbit but it produces several spe                    | ectral 1    |  |  |  |
|                                                                                                | Reason: There are many excited energ                                                                                                                                    | y levels available.                                         |             |  |  |  |
| 7.                                                                                             | <b>Assertion:</b> The energy of the electron possible orbits.                                                                                                           | in a hydrogen atom has a negative sig                       | n for all 1 |  |  |  |
|                                                                                                | Reason: Energy of an electron close to                                                                                                                                  | nucleus is taken as zero.                                   |             |  |  |  |
| 8.                                                                                             | Why Bohr's orbits are called energy le                                                                                                                                  | evels?                                                      | 1           |  |  |  |
| 9.                                                                                             | Which of the following have shortest                                                                                                                                    | wavelength?                                                 | 1           |  |  |  |
|                                                                                                | Microwave, Infra-red rays, Long radio                                                                                                                                   | waves, X-rays                                               |             |  |  |  |
| 10.                                                                                            | Define the term frequency.                                                                                                                                              |                                                             | 1           |  |  |  |
| 11.                                                                                            | Define electromagnetic radiation.                                                                                                                                       |                                                             | 1           |  |  |  |
| 12.                                                                                            | The energy associated with the first orbit in hydrogen atom is $-2.18 \times 10^{-18}$ J atom <sup>-1</sup> . What is the energy associated with 5 <sup>th</sup> orbit? |                                                             |             |  |  |  |
| 13.                                                                                            | Calculate the energy of photon of light $(h = 6.626 \times 10^{-34} \text{ J s})$                                                                                       | at having frequency of $3 \times 10^{15}$ s <sup>-1</sup> . | 2           |  |  |  |
| 14.                                                                                            | Write any two limitations of Bohr's m                                                                                                                                   | nodel.                                                      | 2           |  |  |  |
|                                                                                                |                                                                                                                                                                         |                                                             |             |  |  |  |

5.

3

15. (i) Table tennis ball has a mass of 0.01 kg and a speed of 90 m/s. If speed can be measured within an accuracy of 4% what will be the uncertainty in speed and position?

(ii) State Heisenberg's Uncertainty principle.

\*\*\*\*\*\*\*\*\*

