SET	A/B/C

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION 2023 CHEMISTRY (043)

CLASS: XI Max. Marks: 70

QN.NO		
QIV.IVO	VALUE POINTS	MARKS
		SPLIT UP
	SECTION A	
1	(b) Balmer series	1
2	(c) d block	1
3	(d) 0	1
4	(b) Spin quantum numbers	1
5	(b) Al ₂ O ₃	1
6	(a) LiF	1
7	(b) 2	1
8	(b) Be ⁻	1
9	(c) (ii) and (iii) are correct	1
10	(d) Be^{3+} (n=2)	1
11	(c) PF ₅	1
12	(b) Pyramidal	1
13	(b) Assertion and reason both are correct but reason is not the correct explanation for assertion	1
14	(b) Assertion and reason both are correct but reason is not the correct explanation for assertion.	1
	2 3 4 5 6 7 8 9 10 11 12	1 (b) Balmer series 2 (c) d block 3 (d) 0 4 (b) Spin quantum numbers 5 (b) Al ₂ O ₃ 6 (a) LiF 7 (b) 2 8 (b) Be ⁻ 9 (c) (ii) and (iii) are correct 10 (d) Be ³⁺ (n=2) 11 (c) PF ₅ 12 (b) Pyramidal 13 (b) Assertion and reason both are correct but reason is not the correct explanation for assertion 14 (b) Assertion and reason both are correct but reason is not the correct

A	15	(a) Assertion and reason both are correct and reason is the correct explanation for assertion.	1
A	16	(c) Assertion is correct statement but reason is wrong statement.	1
		SECTION B	
A	17	;ö−ii=o:	2
		1/2	
		FC on $N = 5-2-3 = 0$	
		FC on single bonded $O = 6-6-1 = -1$ $\frac{1}{2}$	
		FC on double bond $O = 6-4-2 = 0$ $\frac{1}{2}$	
A	18	(i) Element E ½	2
		(ii) Element C ½	
		(iii) Element B ½	
		(iv) Element F ½	
A	19	Any two limitation with example	2
A	20	In halogens family, as we move down the group tendency to gain electron	2
		decreases due to increase in atomic size and less nuclear force of attraction	
		for incoming electron. Hence reactivity decreases down the group.	
		In alkali metals, tendency to lose electron increases due to increase in	
		atomic size and decrease in effective nuclear charge, less energy is needed	
		to remove electron. Hence reactivity increases down the group.	
A	21	$\Lambda = h/mv$	2
		$= (6.626 \times 10^{-34}) \div (9.1 \times 10^{-31} \times 2.19 \times 10^{6})$	
		$= 0.332 \times 10^{-9} \mathrm{m}$	
		OR	
		(b) n= 1, l=1 is not possible. L can have value from 0,1(n-1)	
		(d) Not possible n cannot have zero value 1	
		SECTION C	
A	22	(a) [Ar] $3d^3$ 1	3
13	22	(a) [A1] 3u 1 (b) Hund's rule 1	3
		(0) Hulla Stute	

Page **2** of **8**

		Electron pairing will not take place in orbitals of same energy until each	
		orbital is singly filled.	
A	23	(a) 6s has lower energy, (n + l) value of 4f is 7 while that of 6s is 6. The	3
		lower the $(n + 1)$ value of an orbital lower is the energy. 2	
		(b) Al: valency = 6, oxidation state =3 $\frac{1}{2}+\frac{1}{2}$	
		OR	
		(i) Be $-1s^2 2s^2$	
		$B-1s^2 2s^2 2p^1$	
		The energy required to remove an electron from completely filled 2s orbital	
		is higher than the energy required to remove electron from 2p orbital.	
		(ii) Electronegativity definition	
A	24	(a) BeH ₂ molecule is linear. The resultant dipole moment of two Be-H	3
		bonds cancelled and give zero dipole moment.	
		←→ +→ HBeH	
		180°	
		Resultant $\mu = 0$ 1½	
		(b)Due to resonance, all C-O bond are equivalent.	
		••- ••-	
		for tor tor tor	
		и ш ш 1½	
A	25	$\bar{v} = 1.09677 \times 10^7 \{1/2^2 - 1/4^2\} = 0.2056 \times 10^7 \text{ m}^{-1}$	3
		$\Lambda = 4.8628 \times 10^{-7} \text{ m}$	
A	26	PCl ₅ – sp ³ d, trigonal bipyramidal	3
		SF_6 -sp ³ d ² , octahedral	
A	27	(i) Due to smaller size of F than Cl. The electron -electron repulsion in 2p	3
		subshell of F is large and the incoming electron is not accommodated with	
		the ease as is accommodate in larger 3p subshell of Cl.	
		(ii) N- $1s^2 2s^2 2p^3$	
		$O - 1s^2 2s^2 2p^4$	

		In case of N, electron is to be removed from half-filled p-orbitals. Hence	
		energy required to remove the valence electron is high ie ionization	
		enthalpy is high. O has 4 valence electrons in 2p orbital. Due to increased	
		electron-electron, electron can be easily removed from 2p orbital of O.	
		(iii)Na has 11 electron and 11 protons where as Mg ⁺ have 12 proton and 11	
		electrons. Due to higher effective nuclear in case of Mg ⁺ , removal of	
		electron from it requires more energy.	
A	28	$\Delta x = h/4\pi m \Delta v$	3
		$\Delta v = (600 \text{ x } 0.005)/100 = 0.03 \text{m/s}$	
		$\Delta x = (6.626 \text{ x } 10^{-34}) / (4 \text{ x } 3.14 \text{ x } 9.1 \text{ x } 10^{-31} \text{ x } 0.03) = 1.93 \text{ x } 10^{-3} \text{ m}$	
		SECTION D	
A	29	(a) Red colour because it has highest wavelength and lowest energy	4
		(b) dig of $2p_x$, $3d_{x^2-y^2}$	
		(c) $E = hv$	
		$= 6.626 \times 10^{-34} \times 5 \times 10^{14}$	
		$= 33.13 \times 10^{-20} \mathrm{J}$	
		OR	
		Angular momentum l for 3p and 4p orbitals will be same because l= 1 for p	
		orbital	
A	30	(a)	4
		HNO ₃ Nitric Acid	
		(b) sp^2	
		(c) Lattice enthalpy definition. Larger the lattice enthalpy of an ionic	
		compound larger is its stability.	
		OR	
		Sigma bond is stronger than pi bond. This is because sigma bond is formed	
		by head on overlapping of orbitals, extend of overlapping is large. On the	
		other hand, pi bond is formed by sideways overlapping.	

		SECTION C	
A	31	Any 5 questions	5
		(i) Lithium due to similar size, charge/radius ratio	
		(ii) (n-1)d ¹⁻¹⁰ ns ¹⁻²	
		(iii) The arrangement of the given species in order of their increasing ionic	
		radii is as follows: $Al^{3+} < Mg^{2+} < Na^+ < F^- < O^{2-} < N^{3-}$	
		(iv) Period = 4, Group = 3	
		(v) Group 16	
		(vi)F > O > Cl > N	
		(vii) Ununennium, UUe	
A	32	(a) HF is more polar as compared to HCl because F is more electronegative	5
		than Cl. Greater the difference in electronegativity, more will be the	
		polarity, higher will be the dipole moment.	
		(b) N ₂ have high bond enthalpy than O ₂ due to the presence of triple bond in	
		N_2 whereas O_2 has double bond.	
		(c) Explain sp^2 hybridization in C_2H_4 with dig	
		OR	
		(a) Formation H ₂ molecule on basis of VBT	
		(b) sp ³ d ² , Square pyramidal	
		(c) Both NH ₃ and H ₂ O has sp ³ hybridization. In case of NH ₃ only one lone	
		pair of electrons is present on N where as in H ₂ O, 2 lone pairs is present on	
		O. Since lp-lp repulsion is greater than lp-bp repulsion, the two lp of oxygen	
		pushes the bp closer than one lp on N. This leads to small angle in H ₂ O.	
A	33	(a) $\Lambda_A = h/p_A$	5
		$\Lambda_{ m B} = { m h}/{ m p}_{ m B}$	
		$P_{\rm B} = P_{\rm A}/2$	
		$\Lambda_{\rm B}=10^{-7}{\rm m}$	
		(b) Any two difference	
		(c) Frequency - Number of waves passes through a given point in one	
		second.	
		OR	
		(i) $E_n = (-2.18 \times 10^{-18} \times Z^2) / n^2 = 0.545 \times 10^{-18} J$	

		(ii) Heisenberg's uncertainty principle	
		It is impossible to determine the exact position and velocity of an electron	
		simultaneously.	
		(iii) Degenerate orbital definition.	
В	1	(a) Brackett series	1
В	2	(b) p block	1
В	3	(c) 1	1
В	5	(a) s > p > d > f	1
В	7	(b) 4	1
В	8	(a) Cs	1
В	12	(b) Square planar	1
В	13	(c) Assertion is correct statement but reason is wrong statement.	1
В	14	(b) Assertion and reason both are correct but reason is not the correct	1
		explanation for assertion	
В	15	(c) Assertion is correct statement but reason is wrong statement.	1
В	16	(b) Assertion and reason both are correct but reason is not the correct	1
		explanation for assertion	
В	17	Formal Charge of CO ₃ q ₁ = V - N - B/2 v N B q ₁ c 4 0 8 0 o1 6 6 2 -1 o3 6 4 4 0 Formal charge -2 q ₁ = Formal charge (FC) V = No. of valence electrons N = No. of lane electrons B = No. of bonding electrons Chargest parts and series Chargest	2
В	21	OR	2
		$\Lambda = h/mv$	
		$m = (6.626 \times 10^{-34})/(6.6 \times 10^{-6} \times 10^{4})$	
		$m=10^{-32} \text{ kg}$	
	22	(a) $[Ar]3d^9$	3
	23	(i) C- 1s ² 2s ² 2p ²	3
		$B-1s^2 2s^2 2p^1$	

Page 6 of 8

	Nuclear charge of C is more than that of B. Hence first ionization enthalpy	
	of C is high. After the removal of one electron, the second electron to	
	removed from C is from 2p whereas that from B is from 2s. Hence second	
	IE is high for B.	
	(ii) electron gain enthalpy definition	
	OR	
	(a) 7s based on n+l rule,7s has (n+l) value 7 and that of 5f is 8. 7s has low	
	value n+l value, ie low energy.	
	(b) oxidation state 3, covalency -6	
24	(a) CO ₂ is linear molecule, bond moments are equal and opposite, therefore	3
	cancel each other and net dipole moment is zero.	
	SO ₂ is bent molecule, it has net dipole moment.	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(b) Due to resonance	
	$\begin{bmatrix} \vdots \vdots \\ $	
25	$v = 3.29 \times 10^{15} (1/n_1^2 - 1/n_2^2)Z^2$	3
	$= 3.29 \times 10^{15} \times 21 \times 4 \times 10^{-2}$	
	$= 276.3 \times 10^{13} \mathrm{Hz}$	
	$\delta = c/v = 3 \times 10^8 / 276.3 \times 10^{13}$	
	= 0.01097 x 10 ⁻⁵ m	
27	(i) Noble gas has stable configuration. Therefore, energy is absorbed when	3
	electron is added to these ie electron gain enthalpy is positive	
	(ii) Anions are formed by gaining of electron. Thus, increase in no of	
	electrons in atom occur whereas nuclear charge remains same. Greater no of	
	electron is attracted by same nuclear charge after anion formation. O ²⁻ has	
	8proton and 12 electrons where as O atom has 8 proton and 8 electrons.	
28	$\Delta v = (3 \times 10^7 \times 0.5) / 100 = 1.5 \times 10^5 \text{ m}$	3
	$\Delta x = h/4\pi m \Delta v$	
	$= 0.21186 \times 10^{-12} \mathrm{m}$	
29	(b) Shape of 2p _y and 3d _z ²	4

		(c) $\hat{\Lambda} = h/mv$	
		$m = h/\Lambda v = (6.626 \times 10^{-34})/(5 \times 10^{-12} \times 3 \times 10^{8}) = 0.4417 \times 10^{-30} kg$	
	30	(b)	4
		:Ö: H:Ö <mark>: S</mark> :Ö:H :Ö:	
В	32	(i) Al, due to similar size and charge/radius ratio	
		(vii) unbiennium ,ube	
	32	(a)	5
		In NH ₃ , dipoles are being added and they are towards lone pair of electrons	
		, where as in NF ₃ ,the resultant dipole is opposite to the lone pair of	
		electrons because F is more electronegative than N. Hence NH ₃ has high	
		dipole moment.	
		(c) Bonding in ethyne with hybridization	
В	33	(i) $E_n = (-2.18 \text{ x } 10^{-18} \text{ x } Z^2) / n^2 = 0.3488 \text{ x } 10^{-18} \text{J}$	5
С	2	(c) d block	
С	3	(d) 0	