

INDIAN SCHOOL MUSCAT SECOND PERIODIC TEST

SUBJECT-PHYSICS

CLASS: XII

21.05.2023

Sub. Code: 042

Time Allotted: 50mts.

Max .Marks: 20

GENERAL INSTRUCTIONS:

(i) All questions are compulsory.

(ii) You may use the following values of physical constants where ever necessary

 $c = 3 \times 10^8 \text{ m/s},$

me = 9.1×10^{-31} kg, $e = 1.6 \times 10^{-19}$ C,

 $\varepsilon_0 = 8.854 \text{ x} 10^{-12} \text{ C}^2 N^{-1} m^{-2}$

SECTION-A

1. Electrostatic potential energy of a system of two point charges is equal to the amount of work done in bringing these two charges from infinite to that distance apart. If two charges q1 & q2 are separated by a distance r then the potential energy of the system of these two point charges is given

as
$$U = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r} J$$

The above potential energy expression, is unaltered whatever way the charges are brought to the specified locations, because of path-independence of work for electrostatic force.

- (i) The electric potentials at points P, Q and R are 2V, 4V and 6V respectively. A point charge of 6mC is taken from P to R via point Q. The kinetic energy gained by the charge will be
 - (a) 24 J
- (b) $24 \times 10^{-3} \text{ J}$
- (c) $12 \times 10^{-3} \text{ J}$
- (d) 12J
- (ii) An electron is taken from a lower potential to a higher potential. Its potential energy (d) becomes zero (c) remains unchanged (a)increases (b) decreases
- (iii) A square of side 'a' has a charge q placed at its center and another charge Q at one of its corners. Q is transported to the diagonally opposite corner via some mean. The work done in doing so will be
 - (a) $\frac{Q.q}{4\pi\varepsilon_0 a}$
- (b) $\frac{Q.q}{4\pi\varepsilon_0 a^2}$ (c) $\frac{Q.q}{4\pi\varepsilon_0 \sqrt{2}a}$
- (d) zero

- (iv) The potential energy of the system of charges will be negative when
- (a) Both charges are positive

- (b) Both charges are negative
- (c) Both are kept on the either side of the origin (d) Both the charges are of opposite nature

OR

A positively charged particle is released from rest in an uniform electric field. The electric potential energy of the charge

- (a) remains constant as the electric field is uniform
- (b) increases because the charge moves along the electric field
- (c) decreases because the charge moves along the electric field
- (d) decreases because the charge moves opposite to the electric field

SECTION-B

2. State four properties of equipotential surface.

2

2

- 3. If N drops of same size each having the same charge, coalesce to form a bigger drop. Calculate the potential of bigger drop.
- 2

4. (i) Define the term 'electric flux'. Write its S.I. unit.

- (ii) Two charges of magnitude -2Q and +Q are located at points (a, 0) and (4a, 0) respectively. What is the electric flux due to these charges through a sphere of radius '3a' with its centre at origin?
- 5. A hollow cylindrical box of length 1m and area of cross-section 25 cm² is placed in a threedimensional coordinate system as shown in the figure. The eletric field in the region is given by $E = 50x\hat{i}$, where E is in N/C and x in meter. Calculate the net electric flux through the cylinder.

6. Using Gauss' law, derive an expression for the electric field due to a uniformly charged infinite plane sheet.

2

SECTION-C

- 7. A charge Q is distributed over two concentric hollow spheres of radii r and R(R>r) such that their surface densities are equal. Derive the expression for the potential at the common center.
- 3
- 8. Use Gauss' law to derive the expression for the electric field (E) due to a straight uniformly charged infinite line of charge density λ C/m.

3

INDIAN SCHOOL MUSCAT SECOND PERIODIC TEST

SUBJECT-PHYSICS

CLASS: XII

Sub. Code: 042

Time Allotted: 50mts.

21.05.2023

Max .Marks: 20

GENERAL INSTRUCTIONS:

(i) All questions are compulsory.

(ii) You may use the following values of physical constants where ever necessary

 $c = 3 \times 10^8 \text{ m/s},$

me = 9.1 x10⁻³¹ kg, e = 1.6 x 10⁻¹⁹ C, ϵ_0 = 8.854 x10⁻¹² $C^2 N^{-1} m^{-2}$

SECTION-A

1. Electrostatic potential energy of a system of two point charges is equal to the amount of work done 4 in bringing these two charges from infinite to that distance apart. If two charges q1 & q2 are separated by a distance r then the potential energy of the system of these two point charges is given as $U = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r} J$

The above potential energy expression, is unaltered whatever way the charges are brought to the specified locations, because of path-independence of work for electrostatic force.

- (i) An electron is taken from a lower potential to a higher potential. Its potential energy (c) remains unchanged (d) becomes zero (b) decreases (a)increases
- (ii) The electric potentials at points P, Q and R are 2V, 4V and 6V respectively. A point charge of 6mC is taken from P to R via point Q. The kinetic energy gained by the charge will be
 - (a) 24 J
- (b) $24 \times 10^{-3} J$
- (c) $12 \times 10^{-3} \text{ J}$
- (d) 12J
- (iii) A square of side 'a' has a charge q placed at its center and another charge Q at one of its corners. Q is transported to the diagonally opposite corner via some mean. The work done in doing so will be
 - (a) $\frac{Q.q}{4\pi\varepsilon_0 a}$
- (b) $\frac{Q \cdot q}{4\pi\varepsilon_0 a^2}$ (c) $\frac{Q \cdot q}{4\pi\varepsilon_0 \sqrt{2}a}$
- (d) zero

- (iv) A positively charged particle is released from rest in an uniform electric field. The electric potential energy of the charge
 - (a) remains constant as the electric field is uniform
 - (b) increases because the charge moves along the electric field
 - (c) decreases because the charge moves along the electric field
 - (d) decreases because the charge moves opposite to the electric field

The potential energy of the system of charges will be negative when

(a) Both charges are positive

- (b) Both charges are negative
- (c) Both are kept on the either side of the origin (d) Both the charges are of opposite nature

SECTION-B

- 2. Twenty-seven drops of same size are charged at 220 V each. They coalesce to form a bigger drop. 2 Calculate the potential of the bigger drop.
- 3. State four properties of equipotential surface.

2

4. (i) Define the term 'electric flux'. Write its S.I. unit.

2

- (ii) Two charges of magnitude -2Q and +Q are located at points (a, 0) and (4a, 0) respectively. What is the electric flux due to these charges through a sphere of radius '3a' with its centre at origin?
- 5. A hollow cylindrical box of length 1m and area of cross-section 25 cm² is placed in a three-2 dimensional coordinate system as shown in the figure. The eletric field in the region is given by $E = 50x\hat{i}$, where E is in N/C and x in meter. Calculate the net electric flux through the cylinder.

6. Using Gauss' law, derive an expression for the electric field due to a uniformly charged infinite plane sheet.

2

SECTION-C

7. Using Gauss' law, obtain the expression for the electric field due to uniformly charged spherical shell of radius R at a point outside the shell. Draw a graph showing the variation of electric field with r, r < R and r > R

3

8. A charge Q is distributed over two concentric hollow spheres of radii r and R(R>r) such that their surface densities are equal. Derive the expression for the potential at the common center.

3

C

INDIAN SCHOOL MUSCAT SECOND PERIODIC TEST

SUBJECT-PHYSICS

CLASS: XII

21.05.2023

Sub. Code: 042

Time Allotted: 50mts.

Max .Marks: 20

GENERAL INSTRUCTIONS:

(i) All questions are compulsory.

(ii) You may use the following values of physical constants where ever necessary

 $c = 3 \times 10^8 \text{ m/s}, \quad me = 9.1 \times 10^{-31} \text{ kg}, \quad e = 1.6 \times 10^{-19} \text{ C}, \quad \epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}$

SECTION-A

1. Electrostatic potential energy of a system of two point charges is equal to the amount of work done 4 in bringing these two charges from infinite to that distance apart. If two charges q1 & q2 are separated by a distance r then the potential energy of the system of these two point charges is given

as
$$U = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r} J$$

The above potential energy expression, is unaltered whatever way the charges are brought to the specified locations, because of path-independence of work for electrostatic force.

- (i) The electric potentials at points P, Q and R are 2V, 4V and 6V respectively. A point charge of 6mC is taken from P to R via point Q. The kinetic energy gained by the charge will be
 - (a) 24 J
- (b) $24 \times 10^{-3} \text{ J}$
- (c) $12 \times 10^{-3} \text{ J}$
- (d) 12J
- (ii) An electron is taken from a lower potential to a higher potential. Its potential energy (d) becomes zero (a)increases (b) decreases (c) remains unchanged
- (iii) A square of side 'a' has a charge q placed at its center and another charge Q at one of its corners. Q is transported to the diagonally opposite corner via some mean. The work done in doing so will be
- (b) $\frac{Q.q}{4\pi\varepsilon_0 a^2}$ (c) $\frac{Q.q}{4\pi\varepsilon_0 \sqrt{2}a}$
- (d) zero

- (iv) The potential energy of the system of charges will be negative when
- (a) Both charges are positive

(b) Both charges are negative

2

2

2

3

(c) Both are kept on the either side of the origin (d) Both the charges are of opposite nature

OR

A positively charged particle is released from rest in an uniform electric field. The electric potential energy of the charge

- (a) remains constant as the electric field is uniform
- (b) increases because the charge moves along the electric field
- (c) decreases because the charge moves along the electric field
- (d) decreases because the charge moves opposite to the electric field

SECTION-B

- 2. (i) Define the term 'electric flux'. Write its S.I. unit.
 - (ii) Two charges of magnitude –2Q and +Q are located at points (a, 0) and (4a, 0) respectively. What is the electric flux due to these charges through a sphere of radius '3a' with its centre at origin?
- 3. If N drops of same size each having the same charge, coalesce to form a bigger drop. Calculate the potential of bigger drop.
- 4. State four properties of equipotential surface.
- 5. A hollow cylindrical box of length 1m and area of cross-section 25 cm² is placed in a three-dimensional coordinate system as shown in the figure. The eletric field in the region is given by $E = 50x\hat{\imath}$, where E is in N/C and x in meter. Calculate the net electric flux through the cylinder.

6. Using Gauss' law, derive an expression for the electric field due to a uniformly charged infinite plane sheet.

SECTION-C

- 7. A charge Q is distributed over two concentric hollow spheres of radii r and R(R>r) such that their surface densities are equal. Derive the expression for the potential at the common center.
- 8. Use Gauss' law to derive the expression for the electric field (E) due to a straight uniformly charged infinite line of charge density λ C/m.