

INDIAN SCHOOL MUSCAT SECOND PERIODIC TEST

PHYSICS

CLASS: XII

Sub. Code: 042

Time Allotted: 50 mts.

5

29.05.2022

Max. Marks: 20

GENERAL INSTRUCTIONS:

All questions are compulsory.

- 1. No two equipotential surfaces intersect each other. Why?
- 2. Can the electric potential at a point be zero, while the electric field is non-zero? Justify.
- 3. A regular hexagon of side 10 cm has a charge 6μC at each of its vertices. Calculate the potential at the centre of the hexagon.
- 4. Define an equipotential surface. Draw three equipotential surfaces corresponding to 3
 - (i) a constant electric field in the X direction.
 - (ii) a field that uniformly increases in magnitude in the X direction.
- 5. Calculate the potential at the centre of a square ABCD of each side $\sqrt{2}$ m due to charges $6 \mu C$, $2 \mu C$, $-2 \mu C$ and $-3 \mu C$ at four corners of it.
- 6. State Gauss's theorem of electrostatics. Using Gauss's theorem obtain the expression for the electric field due to a uniformly charged thin spherical shell of radius R at a point outside the shell.
- 7. The electric flux through a given area held inside an electric field is a measure of the total number of electric lines of force passing normally through that area. Electric flux is a property of electric field. The net electric flux through a closed surface due to a charge lying outside the closed surface is zero.

- (i) Electric flux is a
- (a) Vector quantity
- c) Scalar quantity
- (b) Constant quantity
- d) None of these
- (ii) A charge q is placed at the centre of a cube of side L. What is the electric flux passing through each face to the cube?
- (a) $\frac{q}{\varepsilon_0}$ (b) $\frac{q}{3\varepsilon_0}$ (c) $\frac{q}{6\varepsilon_0}$ (d) $\frac{q}{9\varepsilon_0}$

- (iii) Total electric flux coming out of a unit positive charge kept in air is
- (a) \mathcal{E}_0
- (b) $4\pi E_0$ (c) $\frac{1}{4\pi E_0}$ (d) E_0^{-1}
- (iv) A cylinder of radius R and length L is placed in a uniform electric field E parallel to the cylinder axis. The total flux for the surface of the cylinder is given by

- (a) πr^2
- (b) zero
- (c) $4\pi ER^2$
- (d) $2\pi ER^2$
- (v) An electric charge of 8.85 \times 10 $^{-13}$ C is placed at the centre of a sphere of radius 1 m. The electric flux through the sphere is

- (a) $0.1 N m^2 C^{-1}$ (b) $0.2 N m^2 C^{-1}$ (c) $0.01 N m^2 C^{-1}$ (d) $0.02 N m^2 C^{-1}$

End of the Question Paper

INDIAN SCHOOL MUSCAT SECOND PERIODIC TEST

PHYSICS

CLASS: XII

Sub. Code: 042

Time Allotted: 50 mts.

29.05.2022

Max. Marks: 20

GENERAL INSTRUCTIONS:

All questions are compulsory.

- 1. Can the electric field at a point be zero, while the electric potential is non-zero? Justify.
- 2. Name the physical quantity whose SI unit is J / C. Is it a vector or a scalar quantity?
- 3. (i) Two charges of magnitudes -2Q and + Q are located at points (a, 0) and (5a,0) 2 respectively. What is the electric flux due to these charges through a sphere of radius 3a with its centre at the origin?
 - (ii) A positive charge +q is located at a point. What is the work done if a unit positive charge is carried once round this charge along a circle of radius r about this point?
- 4. State Gauss's theorem of electrostatics. Derive an expression for the electric field due to a uniformly charged infinite plane sheet of surface charge density σ.
- 5. (i) Why must electrostatic field be normal to the surface at every point of a charged conductor?
 - (ii) Draw the equipotential surfaces corresponding to a single positive charge at the origin.
- 6. (i) Calculate the potential at a point P due to a charge of 8×10^{-7} C located 9 cm away.

- (ii) Hence obtain the work done in bringing a charge of 4×10^{-9} C from infinity to the point P. Does the answer depend on the path along which the charge is brought? Why?
- The electric flux through a given area held inside an electric field is a measure of the total 5 7. number of electric lines of force passing normally through that area. Electric flux is a property of electric field. The net electric flux through a closed surface due to a charge lying outside the closed surface is zero.
 - (i) A charge q is placed at the centre of a cube of side L. What is the electric flux passing through each face to the cube?
 - (a) $\frac{q}{\epsilon_0}$
- $(b)\frac{q}{3\varepsilon_0}$
- $(c)\frac{q}{6\varepsilon_0}$
- $(d)\frac{q}{9\varepsilon_0}$

- (ii) Electric flux is a
- (a) Vector quantity
- c) Scalar quantity
- (b) Constant quantity
- d) None of these
- (iii) An electric charge of 8.85 x 10 $^{-13}$ C is placed at the centre of a sphere of radius 1 m. The electric flux through the sphere is

- (a) $0.1 N m^2 C^{-1}$ (b) $0.2 N m^2 C^{-1}$ (c) $0.01 N m^2 C^{-1}$ (d) $0.02 N m^2 C^{-1}$
- (iv) Total electric flux coming out of a unit positive charge kept in air is
- (a) \mathcal{E}_0
- (b) $4\pi E_0$
- $(c)\frac{1}{4\pi\epsilon_0}$
- (d) ${\epsilon_0}^{-1}$
- (v) A cylinder of radius R and length L is placed in a uniform electric field E parallel to the cylinder axis. The total flux for the surface of the cylinder is given by

- (a) πr^2
- (b) zero
- (c) $4\pi ER^2$
- (d) $2\pi ER^2$

End of the Question Paper

INDIAN SCHOOL MUSCAT SECOND PERIODIC TEST

PHYSICS

CLASS: XII

Sub. Code: 042

Time Allotted: 50 mts.

29.05.2022

Max. Marks: 20

GENERAL INSTRUCTIONS:

All questions are compulsory.

Name the physical quantity whose SI unit is J / C. Is it a vector or a scalar quantity? 2 1. A regular hexagon of side 10 cm has a charge 8µC at each of its vertices. Calculate the 2 2. potential at the centre of the hexagon. 3. Can the electric field at a point be zero, while the electric potential is non-zero? Justify. 2 State Gauss's theorem of electrostatics. Derive an expression for the electric field due to a 3 4. straight uniformly charged infinite line of charge density λ C/m. 5. a) A charge of 24 µ C is given to hollow metallic sphere of radius 0.2 m. Find the potential 3 (i) at the surface of the sphere (ii) at a distance of 0.1cm from the centre of the sphere. (i) Define an equipotential surface. 3 (ii) Two charges 3μ C and -3μ C are placed at points A and B 8 cm apart. (a) Identify an equipotential surface of the system.

(b) What is the direction of the electric field at every point on this surface?

- The electric flux through a given area held inside an electric field is a measure of the total 5 7. number of electric lines of force passing normally through that area. Electric flux is a property of electric field. The net electric flux through a closed surface due to a charge lying outside the closed surface is zero.
 - (i) Total electric flux coming out of a unit positive charge kept in air is
 - (a) \mathcal{E}_0
- (b) $4\pi E_0$
- (c) $\frac{1}{4\pi \epsilon_0}$ (d) ϵ_0^{-1}
- (ii) An electric charge of 8.85 \times 10 $^{-13}$ C is placed at the centre of a sphere of radius 1 m. The electric flux through the sphere is

- (a) $0.1 N m^2 C^{-1}$ (b) $0.2 N m^2 C^{-1}$ (c) $0.01 N m^2 C^{-1}$ (d) $0.02 N m^2 C^{-1}$
- (iii) A charge q is placed at the centre of a cube of side L. What is the electric flux passing through each face to the cube?
- (b) $\frac{q}{3\varepsilon_a}$
- $(c)\frac{q}{6\varepsilon_0}$
- $(d)\frac{q}{980}$

- (iv) Electric flux is a
- (a) Vector quantity
- c) Scalar quantity
- (b) Constant quantity
- d) None of these
- (v) A cylinder of radius R and length L is placed in a uniform electric field E parallel to the cylinder axis. The total flux for the surface of the cylinder is given by

- (a) πr^2
- (b) zero
- (c) $4\pi ER^2$
- (d) $2\pi ER^2$

End of the Question Paper