

INDIAN SCHOOL MUSCAT FIRST PERIODIC TEST

MATHEMATICS

CLASS: XII

Sub. Code: 041

Time Allotted: 50 mts.

19.04.2022

Max. Marks: 20

GENERAL INSTRUCTIONS:

- (3) This question paper consists of 10 questions. All questions are compulsory.
- (ii) Questions 1 3 are MCQ carrying 1 mark each.
- (iii) Questions 4 7 carry 2 marks each.
- (iv) Questions 8 10 carry 3 marks each.
- Which of the following is the principal value branch of $tan^{-1} x$? (1)1.

- (a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (c) $(0, \pi)$ (d) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \{0\}$
- Let f(x) = 3x be a function with domain $\{0, -1, -3, 2\}$. Then domain of (1) f^{-1} is
 - (a) $\{-3, 2, -1, 0\}$ (b) $\{-9, -3, 0, 6\}$ (c) $\{0, 1, 9, 6\}$ (d) $\{0, -1, 8, -27\}$

- Let $A = \{a, b, c, d\}$ and $R = \{(a, b), (b, a), (a, a)\}$ be a relation on set A. (1)Then R is
 - (a) reflexive and transitive only
- (b) symmetric and transitive only

© symmetric only

- (d) transitive only
- (2) Find the value of : $tan^{-1} \left[2 sin \left(2 cos^{-1} \frac{\sqrt{3}}{2} \right) \right]$
- For the set $A = \{1, 2, 3\}$, define a relation in the set as (2)

 $R = \{(1,1), (2,2), (1,2)\}$. Write any two ordered pairs to be added to R to make it an equivalence relation.

- 6. Find the value of : $\cot^{-1}\left(\frac{1}{\sqrt{3}}\right) \sec^{-1}(-2)$ (2)
- 7. Show that the function $f: N \to N$ given by $f(x) = 1 + x^2$ for all $x \in N$, is not surjective.
- 8. Show that the relation in the set of real numbers, defined as $R = \{(a, b): a \le b^2\}$ is neither symmetric nor transitive. (3)
- 9. Find the principal value of : $cos^{-1} \left(sin \frac{3\pi}{4} \right)$ (3)
- 10. Let $A = R \{3\}$ and $B = R \{1\}$. If $f: A \to B$ is a function defined by $f(x) = \frac{x-2}{x-3}$, show that f is one-one and onto.

End of the Question Paper

INDIAN SCHOOL MUSCAT FIRST PERIODIC TEST

MATHEMATICS

CLASS: XII

Sub. Code: 041

Time Allotted: 50 mts.

19.04.2022

Max. Marks: 20

GENERAL INSTRUCTIONS:

- (3) This question paper consists of 10 questions. All questions are compulsory.
- (ii) Questions 1 3 are MCQ carrying 1 mark each.
- (iii) Questions 4 7 carry 2 marks each.
- (iv) Questions 8 10 carry 3 marks each.
- 1. Let $f(x) = x^3$ be a function with domain $\{0, -1, -2, -3\}$. Then domain of (1)
 - (a) $\{3, 2, 1, 0\}$ (b) $\{0, -1, -2, -3\}$ (c) $\{0, 1, 8, 27\}$ (d) $\{0, -1, -8, -27\}$
- 2. Let $A = \{1, 2, 3\}$ and $R = \{(1, 1), (2, 2), (3, 3)\}$ be a relation on set A. Then R(1)
 - (a) transitive only

(b) symmetric only

© reflexive only

- (d) an equivalence relation.
- Which of the following is the principal value branch of $\sec^{-1} x$? **(1)** 3.

- (a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (b) $[0, \pi] \left\{\frac{\pi}{2}\right\}$ (c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (d) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \{0\}$

(2)

For the set $A = \{a, b, c\}$, define a relation in the set as

 $R = \{(a, a), (a, b), (b, c)\}.$

List down the minimum ordered pairs to be added in R to make R reflexive and transitive.

- (2) 5. Find the value of: $tan^{-1}\left(\frac{1}{\sqrt{3}}\right) - cosec^{-1}\left(-\sqrt{2}\right)$
- Show that the function $f: Z \to Z$ given by $f(x) = 1 + x^2$ for all $x \in Z$, is not (2)

surjective.

- 7. Evaluate: $cos\left\{cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}\right\}$ (2)
- 8. Let $A = R \{2\}$ and $B = R \{1\}$. If $f: A \to B$ is a function defined by $f(x) = \frac{x-1}{x-2}$, show that f is one-one and onto.
- 9. Find the principal value of: $cos^{-1} \left(sin \frac{5\pi}{6} \right)$ (3)
- 10. Show that the relation in the set of real numbers, defined as $R = \{(a, b) : a \le b^3\} \text{ is neither symmetric nor transitive.}$ (3)

End of the Question Paper

INDIAN SCHOOL MUSCAT FIRST PERIODIC TEST

MATHEMATICS

CLASS: XII

Sub. Code: 041

Time Allotted: 50 mts.

Max. Marks: 20

19.04.2022

GENERAL INSTRUCTIONS:

- (i) This question paper consists of 10 questions. All questions are compulsory.
- (ii) Questions 1 3 are MCQ carrying 1 mark each.
- (iii) Questions 4 7 carry 2 marks each.
- (iv) Questions 8 10 carry 3 marks each.
 - Let $A = \{1, 2, 3\}$ and $R = \{(1, 2), (2, 3), (1, 3)\}$ be a relation on set A. Then R **(1)** is
 - (a) neither reflexive nor transitive
- (b) neither symmetric nor transitive

- (c) transitive only
- (d) neither reflexive, nor symmetric, nor transitive.
- Which of the following is the principal value branch of $\csc^{-1} x$? (1) 2.

 - (a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (b) $\left[0, \pi\right] \left\{\frac{\pi}{2}\right\}$ (c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- (d) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \{0\}$
- Let $f(x) = x^3$ be a function with domain $\{0, 1, 2, 3\}$. Then domain of f^{-1} is (1) 3.

- (a) $\{3, 2, 1, 0\}$ (b) $\{0, -1, -2, -3\}$ (c) $\{0, 1, 8, 27\}$ (d) $\{0, -1, -8, -27\}$
- Show that the function $f: R \to R$ given by $f(x) = x^2 + 2$ for all $x \in R$, is not (2) 4. surjective.
- 5. Evaluate: $cos \left\{ cos^{-1} \left(-\frac{\sqrt{3}}{2} \right) - \frac{\pi}{2} \right\}$ (2)

- 6. For the set A = {a,b,c}, define a relation in the set as
 R = {(a,a), (a,b), (b,c)}. List down the minimum ordered pairs to be added in R to make R reflexive and transitive.
- 7. Find the value of: $\cot^{-1}\left(\frac{1}{\sqrt{3}}\right) \sec^{-1}(-2)$ (2)
- 8. Let $A = R \{2\}$ and $B = R \{1\}$. If $f: A \to B$ is a function defined by $f(x) = \frac{x-1}{x-2}$, show that f is one-one and onto.
- 9. Show that the relation in the set of real numbers, defined as
 R = {(a, b): a ≤ b²} is neither symmetric nor transitive.
- 10. Find the principal value of: $\sin^{-1}\left(\cos\frac{7\pi}{6}\right)$ (3)

End of the Question Paper