

# INDIAN SCHOOL MUSCAT SECOND PERIODIC TEST

## **MATHEMATICS**

CLASS: XII

Sub.Code:041

Time Allotted: 50mts.

22 .05.2023

Max .Marks: 20

## **GENERAL INSTRUCTIONS:**

1. This Question paper contains four sections A, B, C and D. Each section is compulsory.

2. Section A has 3 MCQ's and 1 Assertion-Reasoning question of 1 mark each.

3. Section B has 3 very short answer (VSA) type questions of 2 marks each.

4. Section C has 2 short answer (SA) type questions of 3 marks each.

5. Section D has 1 Sourced based / Case based Question carrying 4 marks

### **SECTION: A**

1. The value of  $sin^{-1} \left( sin \frac{3\pi}{5} \right)$  is

 $(a)\frac{3\pi}{5}$   $(b)\frac{-\pi}{2}$   $(c)\frac{\pi}{2}$   $(d)\frac{2\pi}{5}$ 

2. One branch of  $\cos^{-1}x$  other than principal value branch corresponds to

(a) 
$$\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$
 (b)  $\left[\pi, 2\pi\right] - \left\{\frac{3\pi}{2}\right\}$  (c)  $(0, \pi)$  (d) )  $\left[2\pi, 3\pi\right]$ 

3. The value of the expression  $2sec^{-1}(2) + sin^{-1}(\frac{1}{2}) + 3sin^{-1}(0)$  is

(a) 
$$\frac{5\pi}{6}$$
 (b)  $\frac{-\pi}{6}$  (c)  $\frac{\pi}{6}$  (d)  $\frac{7\pi}{6}$ 

4. Assertion (A):  $\Delta = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$ , where  $A_{ij}$  is cofactor of  $a_{ij}$ 

Reason (R) :  $\Delta$  = Sum of the products of elements of any row(or column ) with their corresponding cofactors.

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (b) Both (A) and (R) are true but (R) is not the correct explanation of (A)

- (c) (A) is true but (R) is false
- (d) (A) is false but (R) is true

## **SECTION: B**

- 5. Draw the principal value branch of the function  $y = tan^{-1}x$ . Also write the range of the function.
- 6. Find the domain of  $cos^{-1}(2x-1)$ .
- 7. If  $A = \begin{bmatrix} p & 2 \\ 2 & p \end{bmatrix}$  and  $|A^3| = 125$ , then find the value of p.

## **SECTION: C**

- 8. If  $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ , show that  $A^2 5A + 7I = 0$ . Hence find  $A^{-1}$ .
- 9. If  $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ , then verify that  $A \ adj(A) = |A|I$ .

#### **SECTION: D**

10. The monthly income of two brothers Joel and Jeevan are in the ratio 3:4 and the monthly expenditures are in the ratio 5:7 respectively. Each brother saves ₹ 15,000 per month. Read the above instruction and answer the following questions.



- (i) Write the system of linear equations for the above problem.
- (ii) Write the matrix equation for the question.
- (iii) If  $A = \begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}$ , then find  $A^{-1}$ .

**OR** 

(iii) Find the monthly income of Joel and Jeevan using matrix method.





## INDIAN SCHOOL MUSCAT SECOND PERIODIC TEST

#### **MATHEMATICS**

CLASS: XII

Sub.Code: 041

Time Allotted: 50mts.

22.05.2023

Max .Marks: 20

#### **GENERAL INSTRUCTIONS:**

- 1. This Question paper contains four sections A,B,C and D. Each section is compulsory.
- 2. Section A has 3 MCQ's and 1 Assertion-Reasoning question of 1 mark each.
- 3. Section B has 3 very short answer (VSA) type questions of 2 marks each.
- 4. Section C has 2 short answer (SA) type questions of 3 marks each.
- 5. Section D has 1 Sourced based / Case based Question carrying 4 marks

#### **SECTION: A**

- 1. The value of  $cos^{-1}\left(cos\frac{13\pi}{6}\right)$  is
  - $(a)\frac{13\pi}{6}$  (b)  $\frac{-\pi}{6}$  (c)  $\frac{\pi}{6}$  (d)  $\frac{7\pi}{6}$
- 2. The value of the expression  $2sec^{-1}(2) + sin^{-1}\left(\frac{1}{2}\right) + 2sin^{-1}(0)$  is
  - $(a)\frac{5\pi}{6}$  (b)  $\frac{-\pi}{6}$  (c)  $\frac{\pi}{6}$  (d)  $\frac{7\pi}{6}$
- 3. One branch of  $sin^{-1}x$  other than principal value branch corresponds to
  - (a)  $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$  (b)  $\left[\pi, 2\pi\right] \left\{\frac{3\pi}{2}\right\}$  (c)  $(0, \pi)$  (d)  $\left[2\pi, 3\pi\right]$
- 4. Assertion (A):  $\Delta = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$ , where  $A_{ij}$  is cofactor of  $a_{ij}$

Reason (R):  $\Delta = \text{Sum of the products of elements of any row(or column )}$  with their corresponding cofactors.

(a) Both (A) and (R) are true and (R) is the correct explanation of (A)

- (b) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- (c) (A) is true but (R) is false
- (d) (A) is false but (R) is true

#### **SECTION: B**

- 5. Find the domain of  $sin^{-1}(2x-1)$ .
- 6. Draw the principal value branch of the function  $y = \cot^{-1}x$ . Also write the range of the function.
- 7. If  $A = \begin{bmatrix} a & 3 \\ 1 & a \end{bmatrix}$  and  $|A^3| = 216$ , then find the value of a.

#### **SECTION: C**

- 8. If  $A = \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix}$ , show that  $A^2 6A + 17I = 0$ . Hence find  $A^{-1}$ .
- 9. If  $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}$ , then verify that  $A \ adj(A) = |A|I$ .

#### **SECTION: D**

10. The monthly income of two brothers Joel and Jeevan are in the ratio 3:4 and the monthly expenditures are in the ratio 5:7 respectively. Each brother saves ₹ 15,000 per month. Read the above instruction and answer the following questions.



- (i) Write the system of linear equations for the above problem.
- (ii) Write the matrix equation for the question.
- (iii) If  $A = \begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}$ , then find  $A^{-1}$ .

OR

(iii) Find the monthly income of Joel and Jeevan using matrix method.





## INDIAN SCHOOL MUSCAT SECOND PERIODIC TEST

#### **MATHEMATICS**

CLASS: XII

Sub.Code: 041

Time Allotted: 50mts.

22.05.2023

Max .Marks: 20

#### **GENERAL INSTRUCTIONS:**

1. This Question paper contains four sections A,B,C and D. Each section is compulsory.

- 2. Section A has 3 MCQ's and 1 Assertion-Reasoning question of 1 mark each.
- 3. Section B has 3 very short answer (VSA) type questions of 2 marks each.
- 4. Section C has 2 short answer (SA) type questions of 3 marks each.
- 5. Section D has 1 Sourced based / Case based Question carrying 4 marks

#### **SECTION: A**

- 1. The value of  $tan^{-1}\left(tan\frac{3\pi}{4}\right)$  is
  - $(a)\frac{3\pi}{4}$   $(b)\frac{-\pi}{2}$   $(c)\frac{\pi}{4}$   $(d)\frac{-\pi}{4}$
- 2. The value of the expression  $2\cos^{-1}\left(\frac{1}{2}\right) + \csc^{-1}(2) + 3\sin^{-1}(0)$  is
  - $(a)\frac{5\pi}{6}$  (b)  $\frac{-\pi}{6}$  (c)  $\frac{\pi}{6}$  (d)  $\frac{7\pi}{6}$
- 3. One branch of  $\cos^{-1}x$  other than principal value branch corresponds to

$$\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$
 (b)  $\left[\pi, 2\pi\right] - \left\{\frac{3\pi}{2}\right\}$  (c)  $(0, \pi)$  (d) )  $\left[2\pi, 3\pi\right]$ 

4. Assertion (A):  $\Delta = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$ , where  $A_{ij}$  is cofactor of  $a_{ij}$ 

Reason (R):  $\Delta$  = Sum of the products of elements of any row(or column) with their corresponding cofactors.

(a) Both (A) and (R) are true and (R) is the correct explanation of (A)

- (b) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- (c) (A) is true but (R) is false
- (d) (A) is false but (R) is true

#### **SECTION: B**

- 5. Find the domain of  $cos^{-1}(3x-1)$ .
- 6. If  $A = \begin{bmatrix} a & 4 \\ 5 & a \end{bmatrix}$  and  $|A^3| = 125$ , then find the value of a.
- 7. Draw the principal value branch of the function  $y = tan^{-1}x$ . Also write the range of the function.

#### **SECTION: C**

- 8. If  $A = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix}$ , show that  $A^2 3A 7I = 0$ . Hence find  $A^{-1}$ .
- 9. If  $A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$ , then verify that  $A \ adj(A) = |A|I$ .

#### **SECTION: D**

10. The monthly income of two brothers Joel and Jeevan are in the ratio 3:4 and the monthly expenditures are in the ratio 5:7 respectively. Each brother saves ₹ 15,000 per month. Read the above instruction and answer the following questions.



- (i) Write the system of linear equations for the above problem.
- (ii) Write the matrix equation for the question.
- (iii) If  $A = \begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}$ , then find  $A^{-1}$ .

OR

(iii) Find the monthly income of Joel and Jeevan using matrix method.