SET	A/B/C

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION 2023
 MATHEMATICS (041)

Max.Marks: 80

MARKING SCHEME-VALUE POINTS					
S E T	$\begin{array}{\|l} \hline \mathrm{Q} . \\ \mathrm{N} \\ \mathrm{O} \\ \hline \end{array}$	SET A	SET B	SET C	MARKS SPLIT UP
A	1.	(c) 24	b) 1	(b) $\frac{1}{e}$	1
	2.	(d) $\frac{-\pi}{2}<y<\frac{\pi}{2}$	d) $\mathrm{p}=1, \mathrm{q}=-1$	(a) always increases	1
	3.	a)) $\frac{8}{3}$	(b) $\frac{1}{e}$	(d) $\frac{g(x)}{f(x)}$	1
	4.	d)) $\frac{\pi}{6}$	(a) always increases	(a) $\frac{1}{x \log x \log 7}$	1
	5.	(b) $\frac{1}{2}$	(b) 4	(b) $R-\left\{\frac{1}{2}\right\}$	1
	6.	(d) none of the above is correct	(a) $1 \mathrm{~m} / \mathrm{h}$	(b) 4	1
	7.	(c) bounded in the first quadrant	(a) $\frac{1}{x \log x \log 7}$	(a) $1 \mathrm{~m} / \mathrm{h}$	1
	8.	(d) infinite	(b) $R-\left\{\frac{1}{2}\right\}$	d) $\mathrm{p}=1, \mathrm{q}=-1$	1
	9.	(a) Either I or II are true	(d) $\frac{g(x)}{f(x)}$	(c) 24	1
	$\begin{array}{\|l\|} \hline 10 \\ \hline \end{array}$	b) 1	(c) 24	(d) $\frac{-\pi}{2}<y<\frac{\pi}{2}$	1
	11	d) $\mathrm{p}=1, \mathrm{q}=-1$	(d) $\frac{-\pi}{2}<y<\frac{\pi}{2}$	a)) $\frac{8}{3}$	1
	12	(b) $\frac{1}{e}$	a)) $\frac{8}{3}$	d)) $\frac{\pi}{6}$	1
	13	(a) always increases	d)) $\frac{\pi}{6}$	(b) $\frac{1}{2}$	1
	14	(d) $\frac{g(x)}{f(x)}$	(b) $\frac{1}{2}$	(d) none of the above is correct	1
	15	(b) $R-\left\{\frac{1}{2}\right\}$	(d) none of the above is correct	(c) bounded in the first quadrant	1
	16	(a) $1 \mathrm{~m} / \mathrm{h}$	(c) bounded in the first quadrant	(d) infinite	1

\begin{tabular}{|c|c|c|c|c|}
\hline \& (a) $\frac{1}{x \log x \log 7}$ \& (d) infinite \& (a) Either I or II are true \& 1

\hline \& (b) 4 \& (a) Either I or II are true \& b) 1 \& 1

\hline \& (d) \mathbf{A} is false but \mathbf{R} is true. \& a) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}. \& (d) \mathbf{A} is false but \mathbf{R} is true. \& 1

\hline 20 \& a) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}. \& d) \mathbf{A} is false but \mathbf{R} is true \& a) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}. \& 1

\hline 21
.

23

24 \& \multicolumn{3}{|l|}{| SECTION : A $\begin{aligned} \sin ^{-1}\left[\cos \left(\frac{3 \pi}{5}\right)\right]==\sin ^{-1}\left[\sin \left(\frac{\pi}{2}-\frac{3 \pi}{5}\right)\right]= & \sin ^{-1}\left[\sin \left(-\frac{\pi}{10}\right)\right] \\ & =\frac{-\pi}{10} \end{aligned}$ |
| :--- |
| For f to be defined $\begin{aligned} & \Rightarrow x-1 \geq 0 \text { and }-1 \leq \sqrt{(x-1)} \leq 1 \\ & \Rightarrow x \geq 1 \text { and } 0 \leq x-1 \leq 1 \\ & \Rightarrow x \geq 1 \text { and } 1 \leq x \leq 2 \\ & x \in[1,2] \text { OR } \end{aligned}$ |
| Apply the chain rule $\frac{1}{4 \sqrt{x}} \times \frac{\sec ^{2} \sqrt{x}}{\sqrt{\tan \sqrt{x}}}$ |
| Let $y=x+\frac{1}{x} \Rightarrow \frac{d y}{d x}=1-\frac{1}{x^{2}}$, $\frac{d y}{d x}=0 \Rightarrow x^{2}=1 \Rightarrow x= \pm 1$ |
| $\frac{d^{2} y}{d x^{2}}=+\frac{2}{x^{3}}$, therefore $\frac{d^{2} y}{d x^{2}}($ at $x=1)>0$ and $\frac{d^{2} y}{d x^{2}}($ at $x=-1)<0$ |
| Hence local maximum value of y is at $x=-1$ and the local maximum value $=-2$. |
| Local minimum value of y is at $\mathrm{x}=1$ and local minimum value $=2$. |
| Therefore, local maximum value (-2) is less than local minimum value 2 . |} \& $1+1$

1

\hline
\end{tabular}

It is given that, $\mathrm{A}=\mathrm{B}$
$\left[\begin{array}{cc}2 x+1 & 3 y \\ 0 & y^{2}-5 y\end{array}\right]=\left[\begin{array}{cc}x+3 & y^{2}+2 \\ 0 & -6\end{array}\right]$

Since, matrices are equal then, their corresponding elements are also equal.
$\Rightarrow 2 \mathrm{x}+1=\mathrm{x}+3 \quad$----- (1)
$\Rightarrow 2 \mathrm{y}=\mathrm{y} 2+2$
$\Rightarrow \mathrm{y} 2-5 \mathrm{y}=-6$
From (1),
$\Rightarrow 2 \mathrm{x}+1=\mathrm{x}+3$
$\Rightarrow \mathrm{x}=2$
From (2),
$\Rightarrow \mathrm{y} 2-5 \mathrm{y}=-6$
$\Rightarrow \mathrm{y} 2-5 \mathrm{y}+6=0$
$\Rightarrow \mathrm{y} 2-3 \mathrm{y}-2 \mathrm{y}+6=0$
$\Rightarrow \mathrm{y}(\mathrm{y}-3)-2(\mathrm{y}-3)=0$
$\Rightarrow(\mathrm{y}-3)(\mathrm{y}-2)=0$
$\Rightarrow \mathrm{y}=3$ or $\mathrm{y}=2$
\therefore We get $\mathrm{x}=2$ and $\mathrm{y}=3$ or $\mathrm{y}=2$

Given

$$
\begin{equation*}
y=3 e^{2 x}+2 e^{3 x} \tag{i}
\end{equation*}
$$

Differentiating w.r.t. x

$$
\begin{aligned}
& \frac{d y}{d x}=3 \cdot 2 e^{2 x}+2 \cdot 3 e^{3 x}=6 e^{2 x}+6 e^{3 x} \\
\Rightarrow \quad & \frac{d y}{d x}=6 e^{2 x}+\frac{6\left(y-3 e^{2 x}\right)}{2} \quad \text { (using (i)) } \\
\Rightarrow \quad & \frac{d y}{d x}=6 e^{2 x}+3 y-9 e^{2 x}=-3 e^{2 x}+3 y \quad \ldots \text { (ii) }
\end{aligned}
$$

Differentiating again w.r.t. x
$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}=3 \cdot \frac{d y}{d x}-6 e^{2 x}$

From (ii) $\frac{d y}{d x}-3 y=-3 e^{2 x}$

$$
\Rightarrow \quad \frac{\frac{d y}{d x}-3 y}{-3}=e^{2 x}
$$

Substitute in (iii)

$$
\begin{aligned}
& \Rightarrow \quad \frac{d^{2} y}{d x^{2}}=3 \cdot \frac{d y}{d x}-6\left(\frac{\frac{d y}{d x}-3 y}{-3}\right) \\
& \Rightarrow \quad \frac{d^{2} y}{d x^{2}}=3 \frac{d y}{d x}+2 \frac{d y}{d x}-6 y \\
& \Rightarrow \quad \frac{d^{2} y}{d x^{2}}-\frac{5 d y}{d x}+6 y=0
\end{aligned}
$$

OR
Let $\mathrm{u}=\sin ^{2} \mathrm{x}$ and $\mathrm{v}=\mathrm{e}^{\cos \mathrm{x}}$
Differentiating u and v w.r.t. x , we get
$\mathrm{du} / \mathrm{dx}=2 \sin \mathrm{x}(\mathrm{d} / \mathrm{dx})(\sin \mathrm{x})=2 \sin \mathrm{x} \cos \mathrm{x}$
and $d v / d x=e^{\operatorname{cox}}\left(d / d x(\sin x)=e^{\cos x}(-\sin x)=(-\sin x) e^{\cos x}\right.$
Now, $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{2 \sin x \cos x}{(-\sin x) e^{\cos x}}=-\frac{2 \cos x}{e^{\cos x}}$
SECTION : C
$f(n)=\{2 n+1$, if n is odd $2 n$, if n is even $\}$ for all $n \in N$
$\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ is defined as
It can be observed that:
$\mathrm{f}(1)=1$ and $\mathrm{f}(2)=1$
$\therefore f(1)=f(2)$, where $1 \neq 2$
$\therefore f$ is not one-one.
Consider a natural number (n) in co-domain N
Case I: n is odd
$\therefore \mathrm{n}=2 \mathrm{r}+1$ for some $\mathrm{r} \in \mathrm{N}$.
Then, there exists $4 \mathrm{r}+1 \in \mathrm{~N}$ such that $\mathrm{f}(4 \mathrm{r}+1)=2 \mathrm{r}+1$

Case II: n is even
$\therefore \mathrm{n}=2 \mathrm{r}$ for some $\mathrm{r} \in \mathrm{N}$.
Then, there exists $4 \mathrm{r} \in \mathrm{N}$ such that $\mathrm{f}(4 \mathrm{r})=2 \mathrm{r}$
$\therefore \mathrm{f}$ is onto.
Hence, f is not a bijective function
$f(x)=\frac{x-2}{x-3}$
$\mathrm{f}(\mathrm{x} 1)=\mathrm{f}(\mathrm{x} 2)$
$\Rightarrow \mathrm{x} 1=\mathrm{x} 2$
So, $f(x)$ is one-one
$\mathrm{f}(\mathrm{x})=(\mathrm{x}-3) /(\mathrm{x}-2)$
$y=(x-3) /(x-2)$
$y(x-3)=x-2$
$y x-3 y=x-2$
$y x-x=3 y-2$
$x(y-1)=3 y-2$
$x=(3 y-2) /(y-1)$
Show that $f(x)=y$
$f(x)$ is onto.
So $f(x)$ is bijective
$27 \quad$ Неге $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
$\therefore A^{2}=A \cdot A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
$=\left[\begin{array}{cc}9-1 & 3+2 \\ -3-2 & -1+4\end{array}\right]=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]$
$\therefore \mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]-5\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]+7\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]-\left[\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right]+\left[\begin{array}{cc}7 & 0 \\ 0 & 7\end{array}\right]$
$=\left[\begin{array}{ll}8-15+7 & 5-5+0 \\ -5+5+0 & 3-10+7\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$

$$
\begin{aligned}
& \text { Thus } A^{2}-5 A+71=0 \\
& \text { Pre-multiplying by } \mathrm{A}^{-1} \text { on both sides, we get } \\
& A^{-1}\left(A^{2}-5 A+71\right)=A^{-1} .0 \\
& A^{-1} A^{2}-5 A^{-1} A+7 A^{-1} I=0 \\
& A-5 I+7 A^{-1}=0 \\
& \Rightarrow \mathrm{~A}^{-1}=\frac{1}{7}(5 \mathrm{I}-\mathrm{A})=\frac{1}{7}\left(5\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]\right) \\
& =\frac{1}{7}\left(\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]-\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]\right) \\
& =\frac{1}{7}\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right] \\
& \text { OR } \\
& A=\left[\begin{array}{ccc}
2 & 4 & -6 \\
7 & 3 & 5 \\
1 & -2 & 4
\end{array}\right] \\
& A^{\prime}=\left[\begin{array}{ccc}
2 & 7 & 1 \\
4 & 3 & -2 \\
-6 & 5 & 4
\end{array}\right] \\
& \text { Let } \\
& P=\frac{1}{2}\left(A+A^{\prime}\right) \\
& =\frac{1}{2}\left[\begin{array}{ccc}
4 & 11 & -5 \\
11 & 6 & 3 \\
-5 & 3 & 8
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 & \frac{11}{2} & -\frac{5}{2} \\
\frac{11}{2} & 3 & \frac{3}{2} \\
-\frac{5}{2} & \frac{3}{2} & 4
\end{array}\right]
\end{aligned}
$$

Since

$$
P^{\prime}=P
$$

As we know that, if A and B are two independent events then $P(A \cap B)=P(A) \times$ $P(B)$
$\Rightarrow P(E \cap \bar{F})=P(E) \times P(\bar{F})=\left(\frac{1}{3}\right) \times\left(\frac{3}{5}\right)=\frac{1}{5}$
$\Rightarrow P(\bar{E} \cap F)=P(\bar{E}) \times P(F)=\left(\frac{2}{3}\right) \times\left(\frac{2}{5}\right)=\frac{4}{15}$
$\Rightarrow P($ event that one of them is selected $)=\left(\frac{1}{5}\right)+\left(\frac{4}{15}\right)=\frac{7}{15}$
(ii) $\mathrm{P}($ at least one of them is selected $)=1-\mathrm{P}($ none of them selected $)$

$$
=1-\overline{\mathrm{P}} \bar{E} \cap \bar{F})=1-\left(\frac{2}{3} X \frac{3}{5}\right)=\frac{3}{5}
$$

Since $A=\{0,1,2,3\}$
$R: A \rightarrow A$
Since, $0,1,2,3 \in A$
and $(0,0),(1,1),(2,2)(3,3) \in R$
Hence, for each $a \in A$
$(a, a) \in R$
$\therefore \mathrm{R}$ is a reflexive relation.
Since, $(0,1) \in R$ Then $(1,0) \in R$
$(0,3) \in R$ Then $(3,0) \in R$
Hence, if $(a, b) \in R$ Then $(b, a) \in R$
\therefore Relation R is symmetric relation.

Since, $(1,0) \in R,(0,3) \in R$ but $(1,3) \notin R$
\therefore Relation R is not transitive.

X is a random variable which can assume the values 0,1 or 2 . Now $\mathrm{P}(\mathrm{X}=0)=\mathrm{P}$ (no king)

Now $P(X=0)=P($ no king $)$

$$
=\frac{{ }^{48} C_{2}}{{ }^{52} C_{2}}=\frac{\frac{48!}{2!(48-2)!}}{\frac{52!}{2!(52-2)!}}=\frac{48 \times 47}{52 \times 52}=\frac{188}{221}
$$

Thus, the probability distribution of X is

X	0	1	2
$P(X)$	$\frac{188}{221}$	$\frac{32}{221}$	$\frac{1}{221}$

Now Mean of $\mathrm{X}=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{n} x_{i} p\left(x_{i}\right)$
$=0 \times \frac{188}{221}+1 \times \frac{32}{221}+2 \times \frac{1}{221}=\frac{34}{221}$

OR
E1=Ball transferred from Bag I to Bag II is red
E2=Ball transferred from Bag I to Bag II is black
$\mathrm{A}=$ Ball drawn from Bag II is red in colour
$\mathrm{P}\left(\mathrm{E}_{1}\right)=3 / 7$
$\mathrm{P}\left(\mathrm{E}_{2}\right)=4 / 7$
$\mathrm{P}\left(\mathrm{A} / \mathrm{E}_{1}\right)=5 / 10=1 / 2$
$\mathrm{P}\left(\mathrm{A} / \mathrm{E}_{2}\right)=4 / 10=2 / 5$
Required probability $=\mathrm{P}(\mathrm{A})$
$=\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{A} / \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{A} / \mathrm{E}_{2}\right)$
$=\frac{31}{70}$

SECTION : D

Let the sales of Pencil, Eraser and Sharpener be denoted by matrix X

$$
\mathrm{X}=\left[\begin{array}{ccc}
\text { Pencil } & \text { Eraser } & \text { Sharpener } \\
{\left[\begin{array}{cc}
10,000 & 2,000
\end{array}\right.} & 18,000 \\
6,000 & 20,000 & 8,000
\end{array}\right] \begin{aligned}
& \text { Market A } \\
& \text { Market B }
\end{aligned}
$$

Total Revenue $=$ Total sales x Unit sales price
$=X Y$
$=\left[\begin{array}{ccc}10,000 & 2,000 & 18,000 \\ 6,000 & 20,000 & 8,000\end{array}\right]_{2 \times 3}\left[\begin{array}{l}2.50 \\ 1.50 \\ 1.00\end{array}\right]_{3 \times 1}$
$=\left[\begin{array}{c}10,000(2.50)+2,000(1.50)+18,000(1) \\ 6,000(2.50)+20,000(1.50)+8,000(1)\end{array}\right]$
$=\left[\begin{array}{l}25,000+3,000+18,000 \\ 15,000+30,000+8,000\end{array}\right]=\left[\begin{array}{l}46,000 \\ 53,000\end{array}\right]$
Total Revenue $=\left[\begin{array}{l}46,000 \\ 53,000\end{array}\right] \longrightarrow$ Market A
Hence,
Total revenue of Market A = Rs. 46,000
Total revenue of Market B = Rs. 53,000

Total Cost $=$ Total sales \times Unit cost price
$=X Z$
$=\left[\begin{array}{ccc}10,000 & 2000 & 18,000 \\ 6,000 & 20,000 & 8,000\end{array}\right]_{2 \times 3}\left[\begin{array}{l}2.00 \\ 1.00 \\ 0.50\end{array}\right]_{3 \times 1}$
$=\left[\begin{array}{c}10,000(2.00)+2000(1.00)+18,000(0.50) \\ 6,000(2.00)+20,000(1.00)+8,000(0.50)\end{array}\right]$
$=\left[\begin{array}{c}20,000+2,000+9,000 \\ 12,000+20,000+4,000\end{array}\right]$
$=\left[\begin{array}{l}31,000 \\ 36,000\end{array}\right] \longrightarrow$ Market A
\therefore Total cost of Market A = Rs. 31,000

$$
\begin{aligned}
\text { Profit } & =\text { Revenue }- \text { Cost } \\
& =\left[\begin{array}{l}
46,000 \\
53,000
\end{array}\right]-\left[\begin{array}{l}
31,000 \\
36,000
\end{array}\right] \\
& =\left[\begin{array}{l}
\mathbf{1 5 , 0 0 0} \\
\mathbf{1 7 , 0 0 0}
\end{array}\right]
\end{aligned}
$$

Thus,
Profit in Market A = Rs. 15,000
Profit in Market B = Rs. 17,000
Let E1 and E2 be the respective events that the student knows the answer and he guesses the answer.
Let A be the event that the answer is correct.

$$
P\left(E_{1}\right)=\frac{3}{5}, \quad P\left(E_{2}\right)=\frac{2}{5}
$$

$\mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{1}\right)=1$
$P\left(A \mid E_{2}\right)=\frac{2}{5}$
(i) $\quad \mathrm{P}(\mathrm{A})=P\left(E_{1}\right) \cdot \mathrm{P}(\mathrm{A} \mid \mathrm{E} 1)+P\left(E_{2}\right) \cdot P\left(A \mid E_{2}\right)=\frac{11}{15}$
(ii) $\quad \sum_{i=1}^{2} P\left(E_{i} \mid A\right)=\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right)+\mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{A}\right)=\frac{9}{11}+\frac{2}{11}=1$
(iii) By Baye's theorem,

$$
\begin{gathered}
P\left(E_{1} \mid A\right)=\frac{9}{11} \\
\text { OR } \\
P\left(E_{2} \mid A\right)=\frac{2}{11}
\end{gathered}
$$

34 As base is a square and tank is open at the top.
Hence $x=y$.
(i) as area of metal sheet $A=$ area of base + area
of four sides $=x \times x+4 x \times h$

$$
A=x^{2}+4 x h
$$

(ii) as we eliminate $h, h=\frac{4000}{x^{2}}$

$$
\therefore \quad A=x^{2}+4 x \cdot \frac{4000}{y^{2}}=x^{2}+\frac{16000}{x}
$$

(iii) $1200 \mathrm{~m}^{2}$

SECTION: E

R is an equivalance relation if R is reflexive, symmetric and transitive. a)checking if it is reflexive;

Given R in $A \times A$ and (a, b) $R(c, d)$ such that $a+d=b+c$
For reflexive, consider $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{a}, \mathrm{b})(\mathrm{a}, \mathrm{b}) \in \mathrm{A}$ and applying given condition $\Rightarrow a+b=b+a$; which is true for all A
$\therefore \mathrm{R}$ is reflexive.
b)checking if it is symmetric;
given $(a, b) R(c, d)$ such that $a+d=b+c$
consider (c,d) $\mathrm{R}(\mathrm{a}, \mathrm{b})$ on $\mathrm{A} \times \mathrm{A}$
applying given condition $\Rightarrow \mathrm{c}+\mathrm{b}=\mathrm{d}+\mathrm{a}$ which satisfies given condition
Hence R is symmetric.
c)checking if it is transitive;

Let (a,b) R(c,d) and (c,d) R (e,f)
And (a,b), (c,d), (e,f) $\in A \times A$
applying given condition: $\Rightarrow \mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c} \quad \rightarrow 1 \quad$ and $\mathrm{c}+\mathrm{f}=\mathrm{d}+\mathrm{e} \quad \rightarrow 2$ equation $1 \Rightarrow \mathrm{a}-\mathrm{c}=\mathrm{b}-\mathrm{d}$
now add equation1and2;
$\Rightarrow \mathrm{a}-\mathrm{c}+\mathrm{c}+\mathrm{f}=\mathrm{b}-\mathrm{d}+\mathrm{d}+\mathrm{e}$
$\Rightarrow \mathrm{a}+\mathrm{f}=\mathrm{b}+\mathrm{e}$
$\therefore(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{e}, \mathrm{f})$ also satisfies the condition
Hence R is transitive.
Equivalence class [3,4] =
$\{(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10)\}$
OR

For a function to be one to one, if we assume $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$
Given, $f: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=\frac{x}{x^{2}+1}, \forall \mathrm{x} \in \mathrm{R}$
Thus for one-one function, consider
$f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \frac{x_{1}}{x_{1}^{2}+1}=\frac{x_{2}}{x_{2}^{2}+1}$
$\Rightarrow \mathrm{x}_{1} \mathrm{x}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=\mathrm{x}_{2}-\mathrm{x}_{1}$
$\Rightarrow \mathrm{x}_{2} \mathrm{x}_{1}=1$, if $\mathrm{x}_{2} \neq \mathrm{x}_{1}$
$\Rightarrow \mathrm{f}$ is not one-one function.

Also, a function is onto if and only if for every y in the co-domain, there is x in the domain such that $f(x)=y$

Let $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow \frac{x}{x^{2}+1}=y$
$\Rightarrow x=\frac{1 \pm \sqrt{1-4 y^{2}}}{2 y}$
Now, substituting this x in $f(x)=y$ we can see that this function is not onto.

Let $u=x^{\sin x}$ and $v=\sin x^{\cos x}$
$\Rightarrow \mathrm{y}=\mathrm{u}+\mathrm{v}$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
Consider $u=x^{\sin x}$
$\log u=\sin x \log x$
$\frac{1}{u} \frac{d u}{d x}=\frac{\sin x}{x}+\log x(\cos x)$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\mathrm{u}\left(\frac{\sin \mathrm{x}}{\mathrm{x}}+\cos \mathrm{x} \log \mathrm{x}\right)$
$\Rightarrow \frac{d u}{d x}=x^{\sin x}\left(\frac{\sin x}{x}+\cos x \log x\right)$

Consider $\mathrm{v}=(\sin \mathrm{x})^{\cos \mathrm{x}}$
$\log \mathrm{y}=\cos \mathrm{x} \log \sin \mathrm{x}$
$\frac{1}{v} \frac{d v}{d x}=\frac{\cos x}{\sin x}(\cos x)+\log \sin x(-\sin x)$
$\Rightarrow \frac{\mathrm{dv}}{\mathrm{dx}}=(\sin x)^{\cos x}\left(\frac{\cos ^{2} x}{\sin x}-\sin x \log \sin x\right)$
$\therefore \frac{d y}{d x}=x^{\sin x}\left(\frac{\sin x}{x}+\cos x \log x\right)+(\sin x)^{\cos x}\left(\frac{\cos ^{2} x}{\sin x}-\sin x \log \sin x\right)$

Given,
$x=a(\cos t+t \sin t)$
$\frac{d x}{d t}=a(-\sin t+\sin t+t \cdot \cos t)$

$$
\frac{d x}{d t}=a \cdot t \cdot \cos t
$$

Now, $\mathrm{y}=\mathrm{a}(\sin \mathrm{t}-\mathrm{t} \cos \mathrm{t}) \quad \frac{d y}{d t}=a \cdot t \cdot \sin t$

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

$$
\frac{d y}{d x}=\frac{a \cdot t \cdot \sin t}{a \cdot t \cdot \cos t}
$$

$$
\frac{d y}{d x}=\tan t
$$

$$
\frac{d^{2} y}{d x^{2}}=\sec ^{2} t \div \frac{d x}{d t}
$$

$$
\frac{d^{2} y}{d x^{2}}=\sec ^{2} t \div a \cdot t \cdot \cos t
$$

$$
\begin{aligned}
& \text { Hence } \frac{d^{2} y}{d x^{2}}=\frac{\sec ^{3} t}{a, t} \\
& {\left[\frac{d^{2} y}{d x^{2}}\right]_{t=\frac{\pi}{4}}^{a}=\frac{8 \sqrt{2}}{a \pi}}
\end{aligned}
$$

The shaded region BDEF determined by linear inequalities shows the feasible region Let us evaluate the objective function Z at each point as shown below
At $B(120,0), \quad Z=5 \times 120+10 \times 0=600$
At $D(60,0), \quad Z=5 \times 60+10 \times 0=300$
At $\mathrm{E}(40,20), \quad Z=5 \times 40+10 \times 20=400$
At $F(60,30), Z=5 \times 60+10 \times 30=600$
Hence, Maximum value of Z is 600 at $F(60,30)$

Given

$$
A=\left[\begin{array}{ccc}
4 & 2 & 3 \\
1 & 1 & 1 \\
3 & 1 & -2
\end{array}\right]
$$

$$
\Rightarrow|A|=\left|\begin{array}{ccc}
4 & 2 & 3 \\
1 & 1 & 1 \\
3 & 1 & -2
\end{array}\right|
$$

$$
\Rightarrow|A|=4(-2-1)-2(-2-3)+3(1-3)
$$

$$
=-12+10-6=-8 \neq 0
$$

A^{-1} exists and we know that $A^{-1}=(1 /|A|)$ adj. A

$$
\begin{aligned}
& A_{11}=\left|\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right|=-3, A_{12}=-\left|\begin{array}{cc}
1 & 1 \\
3 & -2
\end{array}\right|=5, A_{13}=\left|\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right|=-2 \\
& A_{21}=-\left|\begin{array}{cc}
2 & 3 \\
1 & -2
\end{array}\right|=7, A_{22}=\left|\begin{array}{cc}
4 & 3 \\
3 & -2
\end{array}\right|=-17, A_{23}=-\left|\begin{array}{ll}
4 & 2 \\
3 & 1
\end{array}\right|=2 \\
& A_{31}=\left|\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right|=-1, A_{32}=-\left|\begin{array}{ll}
4 & 3 \\
1 & 1
\end{array}\right|=-1, A_{33}=\left|\begin{array}{ll}
4 & 2 \\
1 & 1
\end{array}\right|=2 \\
& \text { adj } A=\left[\begin{array}{ccc}
-3 & 5 & -2 \\
7 & -17 & 2 \\
-1 & -1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 7 & -1 \\
5 & -17 & -1 \\
-2 & 2 & 2
\end{array}\right] \\
& \therefore A^{-1}=\frac{1}{|A|} \text { adj. } A=-\frac{1}{8}\left[\begin{array}{ccc}
-3 & 7 & -1 \\
5 & -17 & -1 \\
-2 & 2 & 2
\end{array}\right] \\
& A^{-1}=\frac{1}{8}\left[\begin{array}{ccc}
3 & -7 & 1 \\
-5 & 17 & 1 \\
2 & -2 & -2
\end{array}\right]
\end{aligned}
$$

The given system of equation is: $4 x+2 y+3 z=2$

$$
x+y+z=1
$$

$$
3 x+y-2 z=5
$$

Hence, this system can be written as $A X=B$

$$
\mathrm{A}=\left[\begin{array}{ccc}
4 & 2 & 3 \\
1 & 1 & 1 \\
3 & 1 & -2
\end{array}\right], \mathrm{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right]
$$

As $|A| \neq 0$, the given system has a unique solution $X=A^{-1} B$
$\Rightarrow \quad X=\frac{1}{8}\left[\begin{array}{ccc}3 & -7 & 1 \\ -5 & 17 & 1 \\ 2 & -2 & -2\end{array}\right]\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right] \quad[u \operatorname{sing}(i)]$
$\Rightarrow \quad \dot{X}=\frac{1}{8}\left[\begin{array}{c}6-7+5 \\ -10+17+5 \\ 4-2-10\end{array}\right]=\frac{1}{8}\left[\begin{array}{c}4 \\ 12 \\ -8\end{array}\right]$

	$\begin{aligned} & \Rightarrow\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\frac{1}{2}\left[\begin{array}{c} 1 \\ 3 \\ -2 \end{array}\right] \quad\left[\because \mathrm{X}=\left[\begin{array}{l} x \\ y \\ x \end{array}\right]\right] \\ & \Rightarrow \quad x=\frac{1}{2}, y=\frac{3}{2}, z=-1 \end{aligned}$	2
	SET: B	
25	$\frac{-1}{4 \sqrt{x}} \times \frac{\operatorname{cosec}^{2} \sqrt{x}}{\sqrt{\cot \sqrt{x}}}$	$1+1$
	$f(x)=x^{3}-12 x^{2}+36 x+17$ a. For $f(x)$ to be increasing, we must have $\begin{aligned} & f^{\prime}(x)>0 \\ & \Rightarrow 3(x-6)(x-2)>0 \\ & \Rightarrow x<2 \text { or } x>6 \\ & \Rightarrow x \in(-\infty, 2) \cup(6, \infty) \end{aligned}$ So, $f(x)$ is increasing on $(-\infty, 2) \cup(6, \infty)$ b. For $f(x)$ to be decreasing, we must have $\begin{aligned} & f^{\prime}(x)<0 \\ & \Rightarrow 3(x-2)(x-6)<0 \\ & \Rightarrow 2<x<6 \end{aligned}$ So, $f(x)$ is decreasing on $(2,6)$. Let $A=\{1,2,3, \ldots, 9)$ $\begin{gathered} \nabla(a, b) \in A \times A \\ a+b=b+a \end{gathered}$ $\therefore(a, b) R(a, b)$ $\therefore R$ is reflexive. For $(a, b),(c, d) \in A \times A$ $(a, b) R(c, d) \text { i.e., } a+d=b+c$ Or $\quad c+b=d+a$ then $(c, d) R(a, b)$ $\therefore R$ is symmetric.	$1 \frac{1}{2}$ $1 \frac{1}{2}$ 1

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
For \((a, b),(c, d),(e, f) \in A \times A\) \\
If \((a, b) R(c, d) \&(c, d) R(e, f)\)
\[
\text { i.e. } \quad a+d=b+c \& c+f=d+e
\] \\
Adding, \((a+d)+(c+f)=(b+c)+(d+e)\) \\
Or \(\quad a+f=b+c\) \\
then, \((a, b) R(e, f)\) \\
\(\therefore R\) is transitive. \\
\(\therefore R\) is reflexive, symmetric and transitive. \\
Hence, \(R\) is an equivalence relation.
\[
[(2,5)]=\{(1,4),(2,5)(3,6),(4,7),(5,8),(6,9)\}
\]
\end{tabular} \& 2

1

\hline 38 \& | The feasible region determined by the constraints $x+2 y \geq 100.2 \mathrm{x}-\mathrm{y} \leq 0,2 \mathrm{x}$ $y \leq 200: x \geq 0 . y \geq 0$ is as shown. |
| :--- |
| The corner points of the feasible region are $\mathrm{A}(0,50), \mathrm{B}(20,40) . \mathrm{C}(50,100)$ and D(0.200) |
| The values of Z at these comer points are as follows. |
| $\begin{array}{lll}\text { Cormer point } Z=\mathbf{x}+\mathbf{2 y} & \\ \mathrm{A}(0,50) & 100 & \rightarrow \text { Minimum } \\ \mathrm{B}(20,40) & 100 & \rightarrow \text { Minimum } \\ \mathrm{C}(50,100) & 250 & \\ \mathrm{D}(0,200) & 400 & \rightarrow \text { Maximum }\end{array}$ | \& | 2 |
| :---: |
| |
| |
| 3 |

\hline
\end{tabular}

