SET	A/B/C

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION 2023 MATHEMATICS (041)

CLASS: XII Max.Marks: 80

	MARKING SCHEME-VALUE POINTS				
S E T	Q. N O	SET A	SET B	SET C	MARKS SPLIT UP
A	1.	(c) 24	b) 1	(b) $\frac{1}{e}$	1
	2.	$(d)\frac{-\pi}{2} < y < \frac{\pi}{2}$	d) p = 1, q = -1	(a) always increases	1
	3.	a)) $\frac{8}{3}$	(b) $\frac{1}{e}$	$(d)\frac{g(x)}{f(x)}$	1
	4.	d)) $\frac{\pi}{6}$	(a) always increases	(a) $\frac{1}{x \log x \log 7}$	1
	5.	(b) $\frac{1}{2}$	(b) 4	(b) $R - \left\{\frac{1}{2}\right\}$	1
	6.	(d) none of the above is correct	(a) 1 m/h	(b) 4	1
	7.	(c) bounded in the first quadrant	$(a) \frac{1}{x \log x \log 7}$	(a) 1 m/h	1
	8.	(d) infinite	(b) $R - \left\{\frac{1}{2}\right\}$	d) p = 1, q = -1	1
	9.	(a) Either I or II are true	$(d) \frac{g(x)}{f(x)}$	(c) 24	1
	10	b) 1	(c) 24	$(d) \frac{-\pi}{2} < y < \frac{\pi}{2}$	1
	11	d) p = 1, q = -1	$(d) \frac{-\pi}{2} < y < \frac{\pi}{2}$	a)) $\frac{8}{3}$	1
	12	(b) $\frac{1}{e}$	a)) $\frac{8}{3}$	d)) $\frac{\pi}{6}$	1
	13	(a) always increases	d)) $\frac{\pi}{6}$	(b) $\frac{1}{2}$	1
	14	$(d)\frac{g(x)}{f(x)}$	(b) $\frac{1}{2}$	(d) none of the above is correct	1
	15	(b) $R - \left\{\frac{1}{2}\right\}$	(d) none of the above is correct	(c) bounded in the first quadrant	1
	16	(a) 1 m/h	(c) bounded in the first quadrant	(d) infinite	1

Page **1** of **20**

17	(a) $\frac{1}{x \log x \log 7}$	(d) infinite	(a) Either I or II are true	1
18	(b) 4	(a) Either I or II are true	b) 1	1
19	(d) A is false but R is true.	a) Both A and R are true and R is the correct explanation of A .	(d) A is false but R is true.	1
20	a) Both A and R are true and R is the correct explanation of A .	d) A is false but R is true	a) Both A and R are true and R is the correct explanation of A .	1
21		SECTION : A		
•	$sin^{-1}\left[cos\left(\frac{3\pi}{5}\right)\right] = = sin^{-1}\left[sin\left(\frac{\pi}{2}\right)\right]$	$-\frac{3\pi}{5}\Big] = \sin^{-1}\left[\sin\left(-\frac{\pi}{10}\right)\right]$ $= \frac{-\pi}{10}$		1 + 1
	For f to be defined			
	$\Rightarrow x-1 \ge 0 \text{ and } -1 \le \sqrt{(x-1)^2}$	$\overline{1)} \leq 1$		1
	$\Rightarrow x \ge 1 \text{ and } 0 \le x - 1 \le 1$			
				1
	$x \in [1,2]$ OR Apply the chain rule			1
23	$\frac{1}{4\sqrt{x}} \times \frac{sec^2\sqrt{x}}{\sqrt{tan\sqrt{x}}}$			1
24	Let $y = x + \frac{1}{x} \Rightarrow \frac{dy}{dx} = 1 - \frac{1}{x}$	$\frac{1}{x^2}$,		1
	$\frac{dy}{dx} = 0 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1.$			$\frac{1}{2}$
	$\frac{d^2y}{dx^2} = +\frac{2}{x^3}$, therefore $\frac{d^2y}{dx^2}$	at $x = 1$) > 0 and $\frac{d^2y}{dx^2}$ (at $x = -$	1) < 0	$\frac{1}{2} + \frac{1}{2}$
	Hence local maximum value o			$\frac{1}{2}$
	Local minimum value of y is at	x = 1 and local minimum value	e = 2.	
	Therefore, local maximum val	ue (–2) is less than local minim	num value 2.	

1		 1
	It is given that, A=B $\begin{bmatrix} 2x+1 & 3y \\ 0 & y^2-5y \end{bmatrix} = \begin{bmatrix} x+3 & y^2+2 \\ 0 & -6 \end{bmatrix}$	
	Since, matrices are equal then, their corresponding elements are also equal. $\Rightarrow 2x+1=x+3 \qquad(1)$ $\Rightarrow 2y=y_2+2$ $\Rightarrow y_2-5y=-6 \qquad(2)$ From (1), $\Rightarrow 2x+1=x+3$	$\frac{1}{2}$
	$\Rightarrow x=2$ From (2), $\Rightarrow y_2-5y=-6$	$1\frac{1}{2}$
	$\Rightarrow y2-5y+6=0$ $\Rightarrow y2-3y-2y+6=0$ $\Rightarrow y(y-3)-2(y-3)=0$ $\Rightarrow (y-3)(y-2)=0$	
	 ⇒ y=3 or y=2 ∴ We get x=2 and y=3 or y=2 	
25	Given $y=3e^{2x}+2e^{3x}$ (i) Differentiating w.r.t. x $\frac{dy}{dx} = 3.2e^{2x} + 2.3e^{3x} = 6e^{2x} + 6e^{3x}$	
	$\Rightarrow \frac{dy}{dx} = 6e^{2x} + \frac{6(y - 3e^{2x})}{2} $ (using (i)) $\Rightarrow \frac{dy}{dx} = 6e^{2x} + 3y - 9e^{2x} = -3e^{2x} + 3y \dots (ii)$ Differentiating again w.r.t. x	$\frac{1}{2}$
	$\Rightarrow \frac{d^2y}{dx^2} = 3.\frac{dy}{dx} - 6e^{2x} \qquad \dots (iii)$	2

From (ii) $\frac{dy}{dx} - 3y = -3e^{2x}$	
$\Rightarrow \frac{\frac{dy}{dx} - 3y}{-3} = e^{2x}$	$\frac{1}{2}$
Substitute in (iii)	
$\Rightarrow \frac{d^2y}{dx^2} = 3 \cdot \frac{dy}{dx} - 6 \left(\frac{\frac{dy}{dx} - 3y}{-3} \right)$	
$\Rightarrow \frac{d^2y}{dx^2} = 3\frac{dy}{dx} + 2\frac{dy}{dx} - 6y$	$\frac{1}{2}$
$\Rightarrow \frac{d^2y}{dx^2} - \frac{5dy}{dx} + 6y = 0$	
OR	
Let $u = \sin^2 x$ and $v = e^{\cos x}$	
Differentiating u and v w.r.t. x, we get	
du/dx = 2sinx(d/dx)(sinx) = 2sinxcosx	$\frac{1}{2}$
and $dv/dx = e^{cox}(d/dx(sinx)) = e^{cosx}(-sinx) = (-sinx)e^{cosx}$	$\frac{1}{2}$
Now, $\frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2\sin x \cos x}{(-\sin x)e^{\cos x}} = -\frac{2\cos x}{e^{\cos x}}$	1
SECTION: C $f(n)=\{2n+1, \text{if } n \text{ is odd} 2n, \text{if } n \text{ is even}\} \text{ for all } n \in \mathbb{N}$ $f: N \rightarrow \mathbb{N} \text{ is defined as}$ It can be observed that:	
f(1) = 1 and $f(2) = 1∴f(1) = f(2), where 1 \neq 2∴f is not one-one.$	1
Consider a natural number (n) in co-domain N Case I: n is odd $\therefore n=2r+1 \text{ for some } r\in N.$ Then, there exists $4r+1\in N$ such that $f(4r+1)=2r+1$	1

26	Case II: n is even \therefore n=2r for some r \in N. Then, there exists 4r \in N such that f (4r) = 2r	1
	∴ f is onto. Hence, f is not a bijective function	
	$f(x) = \frac{x-2}{x-3}$ $f(x1)=f(x2)$ OR	1
	\Rightarrow x1=x2 So, f(x) is one-one	
	f(x) = (x-3) / (x-2) $y = (x-3) / (x-2)$ $y(x-3) = x-2$ $yx-3y = x-2$	1
	yx-x = 3y-2 x(y-1) = 3y-2 x = (3y-2) / (y-1)	1
	Show that $f(x)=y$ f(x) is onto.	
	So $f(x)$ is bijective	
27	Here A = $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$	
	$\therefore A^2 = A \cdot A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$	
	$= \begin{bmatrix} 9-1 & 3+2 \\ -3-2 & -1+4 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$	1
	$\therefore A^2 - 5A + 7I = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - 5 \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} + 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
	$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$	
	$= \begin{bmatrix} 8-15+7 & 5-5+0 \\ -5+5+0 & 3-10+7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$	

	Thus $A^2 - 5A + 7I = 0$	1
	Pre-multiplying by A ⁻¹ on both sides, we get	1
	$A^{-1}(A^2 - 5A + 7I) = A^{-1}.0$	
	$A^{-1}A^2 - 5A^{-1}A + 7A^{-1}I = 0$	
	$A - 5I + 7A^{-1} = 0$	
	$\Rightarrow A^{-1} = \frac{1}{7} (5I - A) = \frac{1}{7} \left(5 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \right)$	
	$=\frac{1}{7}\left(\begin{bmatrix}5 & 0\\0 & 5\end{bmatrix} - \begin{bmatrix}3 & 1\\-1 & 2\end{bmatrix}\right)$	1
	$=\frac{1}{7}\begin{bmatrix}2 & -1\\1 & 3\end{bmatrix}$ OR	
27	$A = \begin{bmatrix} 2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4 \end{bmatrix}$	
	then $A' = \begin{bmatrix} 2 & 7 & 1 \\ 4 & 3 & -2 \\ -6 & 5 & 4 \end{bmatrix}$	1
	Let $P = \frac{1}{2}(A + A')$	
	$= \frac{1}{2} \begin{bmatrix} 4 & 11 & -5 \\ 11 & 6 & 3 \\ -5 & 3 & 8 \end{bmatrix}$	
	$= \begin{bmatrix} 2 & \frac{11}{2} & -\frac{5}{2} \\ \frac{11}{2} & 3 & \frac{3}{2} \\ -\frac{5}{2} & \frac{3}{2} & 4 \end{bmatrix}$	
	Since $P' = P$	1

	Let $Q = \frac{1}{2}(A - A') = \frac{1}{2} \begin{bmatrix} 0 & -3 & -7 \\ 3 & 0 & 7 \\ 7 & -7 & 0 \end{bmatrix}$	
	$= \begin{bmatrix} 0 & -\frac{3}{2} & -\frac{7}{2} \\ \frac{3}{2} & 0 & \frac{7}{2} \\ \frac{7}{2} & -\frac{7}{2} & 0 \end{bmatrix}$	
28	Since $Q' = -Q$ $\therefore Q$ is a skew symmetric matrix. $f'(x) = 6x^2 - 6x - 36$	1
28	$=6(x^2-x-6)$	1
	= 6(x - 3) (x + 2) f'(x) = 0 or x = -2, x = 3	
	∴ the intervals are $(-\infty, -2)$, $(-2, 3)$, $(3, \infty)$ getting $f'(x)$ + ve in $(-\infty, -2)$ U $(3, \infty)$ and –ve in $(-2, 3)$ ∴ $f(x)$ is strictly increasing in $(-\infty, -2)$ U $(3, \infty)$, and strictly decreasing in $(-2, 3)$	1
29	Given: A and B appear for an interview for two posts such that the probability of A's selection is $\frac{1}{3}$ and that of B's selection is $\frac{2}{5}$.	
	Let E = event that A is selected	
	Let F = event that B is selected	
	\Rightarrow P(E) = $\frac{1}{3}$ and P(F) = $\frac{2}{5}$	
	As we know that, if $P(A) = x$ then $P(\bar{A}) = 1 - x$	
	\Rightarrow P(\overline{E}) = 1 - ($\frac{1}{3}$) = $\frac{2}{3}$ and P(\overline{F}) = 1 - ($\frac{2}{5}$) = $\frac{3}{5}$	
	∴ P(event that one of them is selected) = P(E \cap F) + P(E \cap F)	
		1
		1

	1
As we know that, if A and B are two independent events then $P(A \cap B) = P(A) \times P(A)$	$1\frac{1}{2}$
3 0 0	
$\Rightarrow P(\bar{E} \cap F) = P(\bar{E}) \times P(F) = (\frac{2}{3}) \times (\frac{2}{5}) = \frac{4}{15}$	
\Rightarrow P(event that one of them is selected) = $(\frac{1}{5})$ + $(\frac{4}{15})$ = $\frac{7}{15}$	
(ii) P(at least one of them is selected) = 1- P(none of them selected)	$1\frac{1}{2}$
$= 1 - P(\overline{E} \cap \overline{F}) = 1 - (\frac{2}{3}X\frac{3}{5}) = \frac{3}{5}$	
Since A = {0, 1, 2, 3}	
$R:A \rightarrow A$	
Since, 0, 1, 2, 3 ∈ A	
and $(0, 0)$, $(1, 1)$, $(2, 2)$ $(3, 3) \in R$	
Hence, for each $a \in A$	
$(a, a) \in R$	
∴ R is a reflexive relation.	1
Since, (0, 1) ∈ R Then (1, 0) ∈ R	
(0, 3) ∈ R Then (3, 0) ∈ R	
	1
∴ Relation R is symmetric relation.	
Since, $(1, 0) \in R$, $(0, 3) \in R$ but $(1, 3) \notin R$	1
∴ Relation R is not transitive.	1
Let X denote the number of kings in a draw of two cards. X is a random variable which can assume the values 0 , 1 or 2. Now $P(X = 0) = P$ (no	
	P(B) $\Rightarrow P(E \cap \overline{F}) = P(E) \times P(\overline{F}) = (\frac{1}{3}) \times (\frac{3}{5}) = \frac{1}{5}$ $\Rightarrow P(\overline{E} \cap F) = P(\overline{E}) \times P(F) = (\frac{2}{3}) \times (\frac{2}{5}) = \frac{4}{15}$ $\Rightarrow P(\text{event that one of them is selected}) = (\frac{1}{5}) + (\frac{4}{15}) = \frac{7}{15}$ (ii) P(at least one of them is selected) = I- P(none of them selected) $= 1 - P(\overline{E} \cap F) = 1 - (\frac{2}{3}X\frac{3}{5}) = \frac{3}{5}$ Since $A = \{0, 1, 2, 3\}$ $R: A \rightarrow A$ Since, $0, 1, 2, 3 \in A$ and $(0, 0), (1, 1), (2, 2) (3, 3) \in R$ Hence, for each $a \in A$ (a, a) $\in R$ $\Rightarrow R \text{ is a reflexive relation.}$ Since, $(0, 1) \in R$ Then $(1, 0) \in R$ ($(0, 3) \in R$ Then $(3, 0) \in R$ Hence, if $(a, b) \in R$ Then $(b, a) \in R$ $\Rightarrow Relation R \text{ is symmetric relation.}$ Since, $(1, 0) \in R, (0, 3) \in R$ but $(1, 3) \not \in R$ $\Rightarrow Relation R \text{ is not transitive.}$ Let X denote the number of kings in a draw of two cards.

Now $P(X = 0) = P$ (no king)	
$= \frac{{}^{48}C_2}{{}^{52}C_2} = \frac{\frac{48!}{2!(48-2)!}}{\frac{52!}{2!(52-2)!}} = \frac{48 \times 47}{52 \times 52} = \frac{188}{221}$	$1\frac{1}{2}$
Thus, the probability distribution of X is	$1\frac{1}{2}$
$X = 0 = 1 = 2$ $P(X) = \frac{188}{221} = \frac{32}{221} = \frac{1}{221}$ Now Mean of $X = E(X) = \sum_{i=1}^{n} x_i p(x_i)$ $= 0 \times \frac{188}{221} + 1 \times \frac{32}{221} + 2 \times \frac{1}{221} = \frac{34}{221}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
OR	
E1=Ball transferred from Bag I to Bag II is red	$\frac{1}{2}$
E2=Ball transferred from Bag I to Bag II is black	_
A=Ball drawn from Bag II is red in colour	
$P(E_1)=3/7$	1
P(E ₂)=4/7	$\frac{1}{2}$ for each step
$P(A/E_1)=5/10=1/2$	F
$P(A/E_2) = 4/10=2/5$	
Required probability = $P(A)$	
= $P(E_1)P(A/E_1)+P(E_2)P(A/E_2)$ = $\frac{31}{70}$ SECTION: D	1
Let the sales of Pencil, Eraser and Sharpener be denoted by matrix X	
Pencil Eraser Sharpener $X = \begin{bmatrix} 10,000 & 2,000 & 18,000 \\ 6,000 & 20,000 & 8,000 \end{bmatrix} \begin{array}{c} \text{Market A} \\ \text{Market B} \end{array}$	1
	1

Let the unit sale price of Pencil, Eraser and Sharpener be denoted by matrix Y

Unit sale price

Let
$$Y = \begin{bmatrix} 2.50 \\ 1.50 \\ 1.00 \end{bmatrix}$$
 Pencil Eraser Sharpener

(i)

Total Revenue = Total sales x Unit sales price

$$= XY$$

 $= \begin{bmatrix} 10,000 & 2,000 & 18,000 \\ 6,000 & 20,000 & 8,000 \end{bmatrix}_{2\times3} \begin{bmatrix} 2.50 \\ 1.50 \\ 1.00 \end{bmatrix}_{3\times1}$

(ii)

Let the unit cost price of Pencil, Eraser and Sharpener be denoted by matrix Z

Unit cost price

$$Let Z = \begin{bmatrix} 2.00 \\ 1.00 \\ 0.50 \end{bmatrix} \begin{array}{c} Pencil \\ Eraser \\ Sharpener \end{array}$$

Now,

Total Cost = Total sales x Unit cost price

=XZ

$$= \begin{bmatrix} 10,000 & 2000 & 18,000 \\ 6,000 & 20,000 & 8,000 \end{bmatrix}_{2\times3} \begin{bmatrix} 2.00 \\ 1.00 \\ 0.50 \end{bmatrix}_{3\times1}$$

2

Total Revenue = Total sales x Unit sales price

= XY

$$= \begin{bmatrix} 10,000 & 2,000 & 18,000 \\ 6,000 & 20,000 & 8,000 \end{bmatrix}_{2\times3} \begin{bmatrix} 2.50 \\ 1.50 \\ 1.00 \end{bmatrix}_{3\times1}$$

$$= \begin{bmatrix} 10,000(2.50) + 2,000(1.50) + 18,000(1) \\ 6,000(2.50) + 20,000(1.50) + 8,000(1) \end{bmatrix}$$

$$= \begin{bmatrix} 25,000 + 3,000 + 18,000 \\ 15,000 + 30,000 + 8,000 \end{bmatrix} = \begin{bmatrix} 46,000 \\ 53,000 \end{bmatrix}$$

Total Revenue =
$$\begin{bmatrix} 46,000 \\ 53,000 \end{bmatrix}$$
 \longrightarrow Market A \longrightarrow Market B

Hence,

Total revenue of Market A = Rs. 46,000

Total revenue of Market B = Rs. 53,000

Total Cost = Total sales x Unit cost price

= X7

$$= \begin{bmatrix} 10,000 & 2000 & 18,000 \\ 6,000 & 20,000 & 8,000 \end{bmatrix}_{2\times3} \begin{bmatrix} 2.00 \\ 1.00 \\ 0.50 \end{bmatrix}_{3\times1}$$

$$= \begin{bmatrix} 10,000(2.00) + 2000(1.00) + 18,000(0.50) \\ 6,000(2.00) + 20,000(1.00) + 8,000(0.50) \end{bmatrix}$$

$$= \begin{bmatrix} 20,000 + 2,000 + 9,000 \\ 12,000 + 20,000 + 4,000 \end{bmatrix}$$

: Total cost of Market A = Rs. 31,000

Profit	= Revenue	– Cost

$$= \begin{bmatrix} 46,000 \\ 53,000 \end{bmatrix} - \begin{bmatrix} 31,000 \\ 36,000 \end{bmatrix}$$

$$=\begin{bmatrix} 15,000 \\ 17,000 \end{bmatrix}$$

Thus,

Profit in Market A = Rs. 15,000

Profit in Market B = Rs. 17,000

33 Let E1 and E2 be the respective events that the student knows the answer and he guesses the answer.

Let A be the event that the answer is correct.

$$P(E_1) = \frac{3}{5}, \qquad P(E_2) = \frac{2}{5}$$

 $P(A|E_1)=1$

$$P(A|E_2) = \frac{2}{5}$$

(i)
$$P(A) = P(E_1).P(A \mid E_1) + P(E_2).P(A \mid E_2) = \frac{11}{15}$$

(i)
$$P(A) = P(E_1).P(A \mid E_1) + P(E_2).P(A \mid E_2) = \frac{11}{15}$$

(ii) $\sum_{i=1}^{2} P(E_i \mid A) = P(E_1 \mid A) + P(E_2 \mid A) = \frac{9}{11} + \frac{2}{11} = 1$

(iii) By Baye's theorem,

$$P(E_1 \mid A) = \frac{9}{11}$$

1

1

2

1

1

$$P(E_2 | A) = \frac{2}{11}$$

As base is a square and tank is open at the top.

Hence x = y.

(i) as area of metal sheet A = area of base + areaof four sides $= x \times x + 4x \times h$ $A = x^2 + 4xh$

$$A = x^2 + 4xh$$

(ii) as we eliminate $h, h = \frac{4000}{500}$

$$\therefore \qquad A = x^2 + 4x \cdot \frac{4000}{x^2} = x^2 + \frac{16000}{x}$$

34

(iii) For least area $\frac{dA}{dx} = 0 \Rightarrow 2x \cdot \frac{16000}{x^2} = 0$ $\Rightarrow x^3 = 8000 \Rightarrow x = 20 \text{ m}$ 34 2 $\frac{d^2A}{dx^2} = 2 + \frac{32000}{x^3} > 0 \text{ for } x = 20$ (iii) 1200 m² 35 SECTION: E R is an equivalence relation if R is reflexive, symmetric and transitive. a) checking if it is reflexive; 1 Given R in A \times A and (a,b) R(c,d)such that a+d=b+c For reflexive, consider $(a,b) R (a,b)(a,b) \in A$ and applying given condition \Rightarrow a+b = b+a; which is true for all A ∴R is reflexive. b)checking if it is symmetric; given(a,b) R (c,d)such that a+d=b+cconsider (c,d) R (a,b)on $A \times A$ applying given condition \Rightarrow c+b = d+a which satisfies given condition Hence R is symmetric. c)checking if it is transitive; Let (a,b) R(c,d) and (c,d) R (e,f)And (a,b), (c,d), (e,f) $\in A \times A$ applying given condition: \Rightarrow a + d = b + c $\rightarrow 1$ and c + f = d + e $\rightarrow 2$ equation $1 \Rightarrow a-c = b-d$ now add equation 1 and 2; \Rightarrow a - c + c + f = b-d + d + e \Rightarrow a + f = b + e \therefore (a,b) R(e,f) also satisfies the condition Hence R is transitive. Equivalence class [3,4] = $\{(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10)\}$ 1 OR

	For a function to be one to one, if we assume $f(x_1) = f(x_2)$, then $x_1 = x_2$	
	Given, f: $R \rightarrow R$ defined by $f(x) = \frac{x}{x^2+1}$, $\forall x \in R$	
	Thus for one-one function, consider	
	$f(x_1) = f(x_2)$	1
	$\Rightarrow \frac{x_1}{x_1^2+1} = \frac{x_2}{x_2^2+1}$	$2\frac{1}{2}$
	$\Rightarrow x_1x_2(x_2 - x_1) = x_2 - x_1$	
	\Rightarrow $x_2x_1 = 1$, if $x_2 \neq x_1$	
	\Rightarrow f is not one-one function.	
	Also, a function is onto if and only if for every y in the co-domain, there is x in the domain such that $f(x) = y$	$2\frac{1}{2}$
	Let $f(x) = y$	L
	$\Rightarrow rac{x}{x^2+1} = y$	
36	$\Rightarrow x = rac{1\pm\sqrt{1-4y^2}}{2y}$	
30	Now, substituting this x in $f(x) = y$ we can see that this function is not onto.	
	Let $u = x^{\sin x}$ and $v = \sin x^{\cos x}$	
	\Rightarrow y = u + v	
	$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$	2
	Consider $u = x^{\sin x}$	
	$\log u = \sin x \log x$	
	$\frac{1}{u}\frac{du}{dx} = \frac{\sin x}{x} + \log x (\cos x)$	
	$\Rightarrow \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{x}} = \mathbf{u} \left(\frac{\sin \mathbf{x}}{\mathbf{x}} + \cos \mathbf{x} \log \mathbf{x} \right)$	
	$\Rightarrow \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{x}} = \mathbf{x}^{\sin \mathbf{x}} \left(\frac{\sin \mathbf{x}}{\mathbf{x}} + \cos \mathbf{x} \log \mathbf{x} \right)$	

Consider
$$v = (\sin x)^{\cos x}$$

$$\log v = \cos x \log \sin x$$

$$\frac{1}{dv} = \frac{\cos x}{\sin x} (\cos x) + \log \sin x (-\sin x)$$

$$\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x} \left(\frac{\cos^2 x}{\sin x} - \sin x \log \sin x \right)$$

$$\therefore \frac{dy}{dx} = x^{\sin x} \left(\frac{\sin x}{x} + \cos x \log x \right) + (\sin x)^{\cos x} \left(\frac{\cos^2 x}{\sin x} - \sin x \log \sin x \right)$$
Given,
$$x = a(\cos t + t \sin t)$$

$$\frac{dx}{dt} = a \left(-\sin t + \sin t + t \cdot \cos t \right)$$

$$\frac{dx}{dt} = a \cdot t \cdot \cos t$$
Now, $y = a(\sin t - t \cos t)$

$$\frac{dy}{dt} = a \cdot t \cdot \sin t$$

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

$$\frac{dy}{dx} = \frac{a \cdot t \cdot \sin t}{a \cdot t \cdot \cos t}$$

$$\frac{dy}{dx} = \tan t$$

$$\frac{d^2y}{dx^2} = \sec^2 t \div \frac{dx}{dt}$$

$$\frac{d^2y}{dx^2} = \sec^2 t \div a \cdot t \cdot \cos t$$

	Hence $\frac{d^2y}{dx^2} = \frac{sec^3t}{a.t}$	$1\frac{1}{2}$
37	$\left[\frac{d^2y}{dx^2}\right]_{t=\frac{\pi}{4}} = \frac{8\sqrt{2}}{a\pi}$	$\frac{1}{2}$
	The shaded region BDEF determined by linear inequalities shows the feasible region Let us evaluate the objective function Z at each point as shown below At B(120,0), $Z=5\times120+10\times0=600$ At D(60,0), $Z=5\times60+10\times0=300$ At E(40,20), $Z=5\times40+10\times20=400$ At F(60,30), $Z=5\times60+10\times30=600$ Hence, Maximum value of Z is 600 at F(60,30)	2
	A (0,60) E (40,20) Fyasible Region D (60,0) B (120,0) 3 10 St (2) 10 10 D (60,0) D (60,0) St (2) 10 D (60,0) D (60,0) D (60,0) St (2) 10 D (60,0) D (60,0) D (60,0) St (2) D (60,0) D (60,0) St (2) D (60,0) D (60,0) St (2) D (60,0) D (60,0)	3
38	Given $A = \begin{bmatrix} 4 & 2 & 3 \\ 1 & 1 & 1 \\ 3 & 1 & -2 \end{bmatrix}$ $\Rightarrow A = \begin{vmatrix} 4 & 2 & 3 \\ 1 & 1 & 1 \\ 3 & 1 & -2 \end{vmatrix}$ $\Rightarrow A = 4(-2 - 1) - 2(-2 - 3) + 3(1 - 3)$ $= -12 + 10 - 6 = -8 \neq 0$ $A^{-1} \text{ exists and we know that } A^{-1} = (1/ A) \text{adj.} A$	
	Page 16 of 20	

$$A_{11} = \begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix} = -3, A_{12} = -\begin{vmatrix} 1 & 1 \\ 3 & -2 \end{vmatrix} = 5, A_{13} = \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} = -2$$

$$A_{21} = -\begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} = 7, A_{22} = \begin{vmatrix} 4 & 3 \\ 3 & -2 \end{vmatrix} = -17, A_{23} = -\begin{vmatrix} 4 & 2 \\ 3 & 1 \end{vmatrix} = 2$$

$$A_{31} = \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = -1, A_{32} = -\begin{vmatrix} 4 & 3 \\ 1 & 1 \end{vmatrix} = -1, A_{33} = \begin{vmatrix} 4 & 2 \\ 1 & 1 \end{vmatrix} = 2$$

adj A =
$$\begin{bmatrix} -3 & 5 & -2 \\ 7 & -17 & 2 \\ -1 & -1 & 2 \end{bmatrix}^{T} = \begin{bmatrix} -3 & 7 & -1 \\ 5 & -17 & -1 \\ -2 & 2 & 2 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} \text{ adj. } A = -\frac{1}{8} \begin{bmatrix} -3 & 7 & -1 \\ 5 & -17 & -1 \\ -2 & 2 & 2 \end{bmatrix}$$

$$\mathbf{A}^{-1} = \frac{1}{8} \begin{bmatrix} 3 & -7 & 1 \\ -5 & 17 & 1 \\ 2 & -2 & -2 \end{bmatrix}$$

The given system of equation is: 4x + 2y + 3z = 2 x + y + z = 13x + y - 2z = 5

Hence, this system can be written as AX = B

$$A = \begin{bmatrix} 4 & 2 & 3 \\ 1 & 1 & 1 \\ 3 & 1 & -2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$$

As $|A| \neq 0$, the given system has a unique solution $X = A^{-1} B$

$$\Rightarrow X = \frac{1}{8} \begin{bmatrix} 3 & -7 & 1 \\ -5 & 17 & 1 \\ 2 & -2 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$$
 [using (i)]

$$\Rightarrow \dot{X} = \frac{1}{8} \begin{bmatrix} 6-7+5 \\ -10+17+5 \\ 4-2-10 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 4 \\ 12 \\ -8 \end{bmatrix}$$

2

	$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} \qquad \begin{bmatrix} \vdots \\ X = \begin{bmatrix} x \\ y \\ x \end{bmatrix} \end{bmatrix}$	2
	$\Rightarrow \qquad x = \frac{1}{2}, y = \frac{3}{2}, z = -1$	
	SET: B	
25	$\frac{-1}{4\sqrt{x}} imes \frac{cosec^2\sqrt{x}}{\sqrt{cot\sqrt{x}}}$	1 + 1
	$4\sqrt{x}$ $\sqrt{\cot\sqrt{x}}$	
31	5(1) 3 10 2 25 17	
	$f(x) = x^3 - 12x^2 + 36x + 17$	
	a. For $f(x)$ to be increasing, we must have	
	f'(x) > 0	
	$\Rightarrow 3(x-6)(x-2)>0$	
	$\Rightarrow x < 2 \text{ or } x > 6$	
	$\Rightarrow x \in (-\infty, 2) \cup (6, \infty)$	$1\frac{1}{2}$
	So, $f(x)$ is increasing on $(-\infty, 2) \cup (6, \infty)$	2
	b. For $f(x)$ to be decreasing, we must have	
	f'(x) < 0	
	$\Rightarrow 3(x-2)(x-6) < 0$	
	$\Rightarrow 2 < x < 6$	
	So, $f(x)$ is decreasing on $(2, 6)$.	
	Let $A = \{1, 2, 3,, 9\}$	$1\frac{1}{2}$
37	2017 - (1,2,0,,0)	
	$\forall (a, b) \in A \times A$	
	a + b = b + a $(a, b) P(a, b)$	
	\therefore $(a, b) R (a, b)$ \therefore R is reflexive.	1
	For (a, b) , $(c, d) \in A \times A$	
	(a, b) R (c, d) i.e., a + d = b + c	
	Or $c + b = d + a$	
	then $(c, d) R (a, b)$	
	∴ R is symmetric.	1

	T / 13 / 15	7 · A · · A	
	For (a, b) , (c, d)		
	If $(a, b) R (c, d)$		
	Or	d(b) + (c+f) = (b+c) + (d+e) $a+f = b+e$	
	10 W-10 W-		
	then, $(a, b) R (a + b) R$: R is transitive		2
		e, symmetric and transitive.	
		equivalence relation.	
), (2, 5) (3, 6), (4, 7), (5, 8), (6, 9)}	
20	[(2) 2)] ((2) 3	y, (=, =) (e, =), (=, -), (e, -), (=, -),	1
38	The feasible region	on determined by the constraints $x+2y \geq 100, 2x-y \leq 0, 2x$	
	$y \le 200; x \ge 0, y \ge$	0 is as shown.	
	The corner points	s of the feasible region are A(0, 50), B(20, 40). C(50, 100) and	
	D(0, 200)		
	The values of Z at	t these corner points are as follows.	
	Corner point	Z = x + 2y	
	A(0, 50)	100 → Minimum	
	B(20, 40)	100 → Minimum	
	C(50,100)	250	2
	D(0, 200)	400 → Maximum	
	180 160 140 120 100 80 40 20	200) $ \begin{array}{c} 2x - y = 0 \\ \hline 20 10 40 50 60 70 80 90 100 10 1294 \\ 2x = y = 200 \end{array} $	3
	5.		

Page **19** of **20**

	SET: C	
21	$\frac{1}{4\sqrt{x}}\sqrt{\sec\sqrt{x}} \ \tan\sqrt{x}$	1 + 1
28		
	It is given that:	
	$f: W \to W$ is defined as $f(n) = \begin{cases} n-1, & \text{if } n \text{ is odd} \\ n+1, & \text{if } n \text{ is even} \end{cases}$	
	For one - one Let $f(n) = f(m)$.	
	It can be observed that if n is odd and m is even, then we will have $n-1=m+1$	
	\Rightarrow n - m = 2	
	However, this is impossible. Similarly, the possibility of n being even and m being odd can also be ignored under a similar argument. Doth n and m must be either odd or even. Now, if both n and m are odd, Then, we have	
	f(n) = f(m)	
	$\Rightarrow n-1=m-1$	1
	$\Rightarrow n = m$	
	Again, if both n and m are even,	
	Then, we have	1
	f(n) = f(m)	
	$\Rightarrow n+1=m+1$	
	$\Rightarrow n = m$	
	$\therefore f$ is one – one.	
	For onto	
	It is clear that any odd number $2r + 1$ in co-domain N is the image of $2r$ in domain	
	N and any even number $2r$ in co-domain N is the image of $2r + 1$ in domain N. $\therefore f$ is onto.	1