Α

INDIAN SCHOOL MUSCAT SECOND PERIODIC TEST

CHEMISTRY

CLASS: XII

Sub.Code: 043

Time Allotted: 50mts.

16.05.2023

Max .Marks: 20

GENERAL INSTRUCTIONS:

- a) All questions are compulsory.
- b) Mark for each question is indicated against it.

Following questions are multiple choice type carrying 1 mark each:

1. Which isomer of C₅H₁₁Cl will have the lowest boiling point?

a) n-pentyl chloride b) Isopentylchloride c) Neopentylchloride d) Sec-pentyl chloride

- 2. Write the name of the product formed when Ethyl bromide is treated with Mg in dry ether 1 followed by hydrolysis.
 - a) Butane
- b) Ethane
- c) Ethene
- d) propane
- 3. Identify the major product formed when Chloromethylcyclohexane on reaction with alcoholic KOH.

1

1

- a)Methylcyclohexene
- b)2-Methylcyclohexene
- c)Methylenecyclohexane d)3-

methylcyclohexene

Which reagents would you use to carry out the reaction? 4.

Methyl benzene → 1-chloro-4-methyl benzene?

1

1

a) Cl_2 , light and heat b) Cl_2 , FeC l_3

- d) CH₃Cl, AlCl₃
- 5. Order of hydrolysis of the following in increasing order is:

-Br, $(CH_3)_3CBr$ **(I)** (II)(III) (IV)

- a) I < II < III < IV
- b) I<IV<III<II
- c) IV<III<II<
- d)I<II<IV<III

In the following questions, a statement of assertion (A) followed by a statement of reason

- (R)is given. Select the most appropriate answer from the options given below:
- (a) Both A and R are true and R is the correct explanation of A
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.

	(e) Both A and R are false	
6.	Assertion: Aryl iodides can be prepared by reaction of arenes with iodine in the presence of	1
	an oxidising agent.	
	Reason: Oxidising agent oxidises I2 into HI.	
7.	Assertion: Chloroethane is more reactive towards S _N 2 than bromoethane.	1
	Reason: C-Br bond is weaker than C-Cl bond.	
	Answer the following:	
8.	Write a test to distinguish between chlorobenzene and benzyl chloride.	1
9.	Write the IUPAC name of C ₆ H ₅ CH(Br)CH ₂ C(CH ₃) ₃ .	1
10.	Explain the Zaitsev rule.	1
11.	Complete the following:	1
	CH ₂ CH ₃ Br ₂ /heat uv light	
12.	Give the equations for the following:	2
	a) Friedel-Crafts alkylation of chlorobenzene	
	b) Wurtz reaction	
13.	Convert:	2
	a) Toluene to benzyl alcohol	
	b) Chloromethane to Ethane nitrile	
14.	Give reasons for the following:	2
	a) Chloroform is kept in dark coloured bottles.	
	b) Allyl and benzyl halides undergo S _N 1 mechanism.	
15.	An optically active compound having molecular formula C7H15Br reacts with aqueous KOH	3
	to give a racemic mixture of products. Identify the compound and write the mechanism	
	involved for the reaction.	

(d) A is false but R is true.

ROLL NUMBER

INDIAN SCHOOL MUSCAT SECOND PERIODIC TEST

CHEMISTRY

CLASS: XII

Sub.Code: 043

Time Allotted: 50mts.

16.05.2023

Max .Marks: 20

GENERAL INSTRUCTIONS:

- a) All questions are compulsory.
- b) Mark for each question is indicated against it

Following questions are multiple choice type carrying 1 mark each:

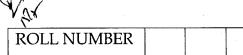
The alkyl halide that undergoes S_N1 reaction more readily: 1.

1

- (a) Ethyl bromide
- (b) Isopropyl bromide (c) Vinylbromide
- (d) n-Propylbromide
- 2. Chlorobenzene reacts with Mg in dry ether to give a compound (A) which further reacts with ethanol to yield:
 - (a) Phenol
- (b) Ethylbenzene
- (c) Benzene
- (d) Phenyl ether
- Which of the following will have the maximum dipole moment? 3.

1

- (a) CH₃F
- (b) CH₃Cl
- (c) CH₃Br
- (d) CH₃I
- In the reaction with HCl, an alkene reacts in accordance with the Markovnikov's rule, to give 4. a product 1-chloro-1- methylcyclohexane. The possible alkene is:



- (c) (a) and (b)
- (d)
- Identify the major product formed when 2-Bromopentane undergoes dehydrohalogenation 1 5. reaction.
 - Pent-1-ene (b) but-1-ene (c)2-methylpentene (d)Pent-2-ene (a)

(R) is given. Select the most appropriate answer from the options given below: (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true but R is not the correct explanation of A. (c) A is true but R is false. (d) A is false but R is true. (e) Both A and R are false 6. Assertion: C₆H₅CHC₆H₅Br is less reactive than C₆H₅CH(CH₃)Br in S_N1 reactions. 1 Reason: Reactivity towards S_N1 mechanism increases from 1⁰ to 3⁰ alkyl halide. Assertion: The presence of -NO₂ group at ortho or para position increases the reactivity of 7. 1 haloarenes towards nucleophilic substitution reactions. Reason:NO₂ group, being an electron withdrawing group decreases the electron density on benzene ring. Answer the following: 8. What are Freons? Give an example 1 9. Give the chemical test to distinguish the following: 1 Chlorobenzene and cyclohexylchloride. 10. Write the IUPAC name of the following C₆H₅CH(CH₃)CH₂CHClCH₃ 1 11. Complete the following: 1 2 12. Convert: (a) Bromomethane to ethanoic acid (b) Chlorobenzene to phenol 13. Account for the following: 2 (a) Haloalkanes though polar are insoluble in water. (b) Chlorobenzene is extremely less reactive towards a nucleophilic substitution reaction. Give the equations for the following 2 14. (b) Friedel-Craft's Alkylation of Chlorobenzene (a) Fittig reaction An optically active compound having molecular formula C₄H₉Br undergoes inversion of 3 15. configuration when reacts with aqueous KOH. Identify the compound and write the mechanism involved for the reaction.

In the following questions, a statement of assertion (A) followed by a statement of reason

INDIAN SCHOOL MUSCAT SECOND PERIODIC TEST

CHEMISTRY

CLASS: XII

Sub.Code: 043

Time Allotted: 50mts.

16.05.2023

Max .Marks: 20

GENERAL INSTRUCTIONS:

- a) All questions are compulsory.
- b) Mark for each question is indicated against it.

Following questions are multiple choice type carrying 1 mark each:

- 1. Chlorobutane reacts with Mg in dry ether to give a compound (A) which further reacts with 1 water to yield:
 - (a) Butanol
- (b) Propane
- (c) Butane (d) Propanol
- Identify the major product formed when 2-Bromopentane undergoes dehydrohalogenation 1 2. reaction.
 - (a) Pent-1-ene (b) but-1-ene (c)2-methylpentene (d)Pent-2-ene
- 3. In the reaction with HCl, an alkene reacts in accordance with the Markovnikov's rule, to give a product 1-chloro-1- methylcyclohexane. The possible alkene is:

- (a) and (b)
- (d)
- 4. Which reagents would you use to carry out the reaction

Ethyl benzene \rightarrow 1-chloro-4-ethyl benzene?

- (a) Cl_2 , light and heat
- (b) Cl_2 , FeC l_3
- $(c)SOCl_2$
- $(d)C_2H_5Cl$, $AlCl_3$
- Which isomer of $C_5H_{11}Cl$ will have highest boiling point? 5.
 - a) n-pentyl chloride b) Isopentylchloride c)Neopentylchloride
- d)Sec-pentyl chloride

1

1

(b) Both A and R are true but R is not the correct explanation of A.	
(e)Both A and R are false	
Assertion: S _N 1 mechanism is facilitated by polar protic solvents like water, alcohol etc.	1
	1
Reason: C— O bond in phenol has a partial double bond character due to resonance.	
Answer the following:	
Give the chemical tests to distinguish the following compounds:	1
3-Chloropropene and 1-chloropropene	
Write the IUPAC name of C ₆ H ₅ CH ₂ CH=CHCH ₂ C <i>l</i>	1
What are Enantiomers?	1
Complete the following:	1
CH₂OH PCl₅	
Give the equations for the following	2
(a) Friedel-crafts acylation of bromobenzene	
(b) Wurtz-Fittig reaction	_
Convert:	2
	2
	2
(a) Iodination of alkanes require the presence of an oxidizing agent like 11103 of 11103.	
chloroalkanes.	
An optically active compound having molecular formula C ₄ H ₉ Br reacts with aqueous KOH	3
involved for the reaction.	
	(c) A is true but R is false. (d) A is false but R is true. (e)Both A and R are false Assertion: S _N I mechanism is facilitated by polar protic solvents like water, alcohol etc. Reason: Polar protic solvents destabilizes the carbocation formed in S _N I reaction. Assertion: Aryl halides cannot be prepared from phenols directly. Reason: C− O bond in phenol has a partial double bond character due to resonance. Answer the following: Give the chemical tests to distinguish the following compounds: 3-Chloropropene and 1-chloropropene Write the IUPAC name of C ₆ H ₃ CH ₂ CH=CHCH ₂ Cl What are Enantiomers? Complete the following: Give the equations for the following (a) Friedel-crafts acylation of bromobenzene (b) Wurtz-Fittig reaction Convert: (a) Ethene to nitroethane (b) Chloroethane to but-1-yne. Account for the following: (a) Iodination of alkanes require the presence of an oxidizing agent like HNO₃ or HIO₃. (b) Reaction of alcohol with thionyl chloride is preferred for the preparation of

In the following questions, a statement of assertion (A) followed by a statement of reason

(R) is given. Select the most appropriate answer from the options given below: