SETS

Real Numbers

Rational Numbers

```
Integers
Natural Numbers
            \(f_{s}{ }^{*} \quad 1,2,3,4, \ldots\)
\(+,-{ }^{*} \quad \ldots-4,-3,-2,-1, O, 1,2,3 \ldots\)
\(+,-s * / s \quad 2 / 3,-17 / 5\)
```

$+, z_{3}, / s$ pi, e, square root of 2

MODULE 3

QUICK RECKP

Let $\mathrm{U}=\{1,2,3,4\}$				
$A=\{1,2\}$ and $B=\{2,3\}$				
Set Notation	Pronunctation	Meaning	Venn dilagram	Answer
$A \cup B$	" A union $B^{\prime \prime}$	everything that is in either of the sets	${ }^{1} \mathrm{~B}^{2} 3{ }^{4}$	$\{1,2,3\}$
$A \cap B$	" A intersect B "	only the things that are in both of the sets	${ }^{1} \mathrm{~B}^{2} 3{ }^{4}$	\{2\}
$A^{\text {c }}$ or A^{\prime}	" A complement", or "not $A^{\prime \prime}$	everything in the universe outside of A	$13^{2} 3^{4}$	$\{3,4\}$

QUICK RECAP

$$
\begin{aligned}
& \text { Let } \mathrm{U}=\{1,2,3,4\} \\
& \qquad A=\{1,2\} \text { and } B=\{2,3\}
\end{aligned}
$$

Set Notation	Pronunctation	Meaning	Venn diagram	Answer
A - B	"Aminus $B^{\prime \prime}$	everything in except for anything in its overlap with B	$\left.{ }^{1} \mathrm{~B}^{2}\right)^{4}$	\{1\}
$(A \cup B)$	"not (Aunion B)"	everything outside A and B	$1^{1}(2)^{4}$	\{4\}
$(A \cap B)$	"not (Ainterseet B)	everything outside of the overlap of A and B	$\left.\mathrm{B}^{1} \mathrm{(}^{2}\right)^{4}$	$\{1,3,4\}$

(i)
a. B^{\prime}

(ii)
b. $A^{\prime} \cap B$

(iii)

C. $A \cap B^{\prime}$

(iv)

Possible cases for the difference of two sets:

Properties of Complement

1. Complement laws:
(i) $A \cup A^{\prime}=\cup$ (ii) $A \cap A^{\prime}=\varnothing$
2. Law of double complementation : $\left(A^{\prime}\right)^{\prime}=A$
3. Laws of empty set and universal set $\varnothing^{\prime}=U$ and $U^{\prime}=\varnothing$
4. De Morgan's law :
(i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}(i i)(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

De Morgan's Law

$$
\begin{aligned}
& \text { 1. }(A \cup B)^{\prime}=A \cap B^{\prime} \\
& \text { 2. }(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
\end{aligned}
$$

Let uspoverthe awby Vennoidagans

SOME BASTC RESULTS ABOUT CERDINAL NUNBER

In today's module, we will go through some practical problems related to our daily life.
The formulae derived in this section will also be used in subsequent Chapter on Prohahilitu

Let A and B be finite sets. If $\mathrm{A} \cap \mathrm{B}=\phi$, then $n(\mathrm{~A} \cup \mathrm{~B})=n(\mathrm{~A})+n(\mathrm{~B})$

NOTE:

$n(A \cup B) \leq n(U)$

In general, if A and B are finite sets, then
(ii) $n(\mathrm{~A} \cup \mathrm{~B})=n(\mathrm{~A})+n(\mathrm{~B})-n(\mathrm{~A} \cap \mathrm{~B})$

Note that the sets $A-B, A \cap B$ and $B-A$ are disjoint and their union is $A \cup B$ Therefore

$$
\begin{aligned}
n(\mathrm{~A} \cup \mathrm{~B}) & =n(\mathrm{~A}-\mathrm{B})+n(\mathrm{~A} \cap \mathrm{~B})+n(\mathrm{~B}-\mathrm{A}) \\
& =n(\mathrm{~A}-\mathrm{B})+n(\mathrm{~A} \cap \mathrm{~B}) \\
& =\frac{n(\mathrm{~B}-\mathrm{A})+n(\mathrm{~A} \cap \mathrm{~B})}{n(\mathrm{~A})}
\end{aligned}
$$

If $\mathrm{A} \cap \mathrm{B}=\phi$, then (i) $n(\mathrm{~A} \cup \mathrm{~B})=n(\mathrm{~A})+n(\mathrm{~B})$

If A and B are finite sets and $A \cap B \neq \phi$, then (ii) $n(\mathrm{~A} \cup \mathrm{~B})=n(\mathrm{~A})+n(\mathrm{~B})-n(\mathrm{~A} \cap \mathrm{~B})$

Word problems on sets are solved here to get the basic ideas how to use the properties of union and intersection of sets.

1) Let A and B be two finite sets such that $n(A)=20, n(B)=28$ and $n(A \cup B)=36$, find $n(A \cap B)$.

Solution:
Using the formula $n(A \cup B)=n(A)+n(B)-n(A \cap B)$.

$$
\text { then } \begin{aligned}
n(A \cap B) & =n(A)+n(B)-n(A \cup B) \\
& =20+28-36 \\
& =48-36 \\
& =12
\end{aligned}
$$

2). There are 35 students in art class and 57 students in dance class. Find the number of students who are either in art class or in dance class.

- When two classes meet at different hours and 12 students are enrolled in both activities.
- When two classes meet at the same hour.

Solution: $\quad n(A)=35, \quad n(B)=57, \quad n(A \cap B)=12$
(Let A be the set of students in art class and B be the set of students in dance class.)
(i) When 2 classes meet at different hours $n(A \cup B)=n(A)+n(B)-n(A \cap B)$

$$
\begin{aligned}
& =35+57-12 \\
& =92-12 \\
& =80
\end{aligned}
$$

(ii) When two classes meet at the same hour, $A \cap B=\varnothing$

$$
\text { So, } \begin{aligned}
n(A \cup B) & =n(A)+n(B)-n(A \cap B) \\
& =n(A)+n(B) \\
& =35+57 \\
& =92
\end{aligned}
$$

3. If X and Y are two sets such that $X \cup Y$ has 50 elements, X has 28 elements and Y has 32 elements, how many elements does $\mathrm{X} \cap \mathrm{Y}$ have ?

The Venn diagram is also used to analyse

 different relationship that exists between two or more objects.The Venn diagram below shows student involvement in two sports. If 100 students were surveyed, how many students were:

Swimmming
Basketbail

15

20

1. Into swimming but not basketball?
2. Into both swimming and basketball?
3. Into either swimming or basketball?
4. Neither into swimming nor basketball?

Venn Diagram in Word Droblems

Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. If five students are in both classes:

- How many students are taking English Composition only?
- How many students are taking Chemistry only?
- How many students are in neither class?
- How many are in either class?

STEP 2:

We have now accounted for five of the 11 English students, leaving nine students taking English but not Chemistry, so we put "9" in the "English only" part of the "English" circle:

STEP 3

We have also accounted for tive of the 29
Chemistry students, leaving 24 students taking Chemistry but not English, so we put "24" in the "Chemistry only" part of the "Chemistry" circle:

STEP4:

This tells us that a total of $9+5+24-38$ students are in either English or Chemistry (or both). This leaves two students unaccounted for, so they must be the ones taking neither class.

- No. of students taking English Composition only -9
- No. of students taking Chemistry only - 24
- No. of students in neither class -2
- No. of students in either class - 38

Consider the following example:
7. Question: In a class of 100 students, 35 like science and 45 like math. 10 like both. How many like either of them and how many like neither?

Solution:

Total number of stude $\mathbf{n}(\mathrm{U})=100 \quad$ วo
Number of science students, $\mathrm{n}(\mathrm{S})=35$
Number of math students, $n(M)=45$
Number of students who like both, $n(M \cap S)=10$
Number of students who like either of them,
$\mathrm{n}(\mathrm{M} \cup \mathrm{S})=\mathrm{n}(\mathrm{M})+\mathrm{n}(\mathrm{S})-\mathrm{n}(\mathrm{M} \cap \mathrm{S})$
$\rightarrow 45+35-10=70$

Number of students who like neith $\left.\in \mathbf{n}(\mathrm{U})^{\prime} \mu\right)-\mathrm{n}(\mathrm{MuS})=100-70=30$
8. If $n(X-Y)=18, n(X \cup Y)=70$ and $n(X \cap Y)=25$, then find $n(Y)$.
A) 27
B) 43
C) 52
D) 45

H.W.

1. In a class of 60 students. 40 students like math. 36 like science, 24 like both the subjects. Find the number of students who like
(i) Math only, (ii) Science only (iii) Either Math or Science (iv) Neither Math nor science.
2. If $n(A-B)=18, n(A \cup B)=70$ and $n(A \cap B)=25$, then find $n(B)$.
3. In a group of 100 persons, 72 people can speak English and 43 can speak French. How many can speak English only? How many can speak French only and how many can speak both English and French?

ASSIGNMENT QUESTIONS

1. Describe the set in Roster form
$\{x: x$ is a two digit number such that the sum of its digit is 8$\}$
2. Are the following pair of sets equal? Give reasons.
$A=\{x: x$ is a letter in the word FOLLOW\}
$B=\{y: y$ is a letter in the word WOLF\}
3. If A and B are two given sets, then represent $(A-B)^{\prime}$ Using Venn diagram.
4. $A=\{1,2,\{3,4\}, 5\}$ which is incorrect and why. (i) $\{3,4\} \subset A(i i)\{3,4\} \in A$
5. Fill in the blanks.
(i) $(A \cup B)^{\prime}=$
.........
(ii) $\left(A^{\prime}\right)^{\prime}=\ldots \ldots \ldots$.
(ii) $(A \cap B)^{\prime}=\ldots \ldots \ldots$
(iii) $A \cap A^{\prime}=$ \qquad
6. List all the element of the set $A=\left\{x: x\right.$ is an integer $\left.x^{2} \leq 4\right\}$
7. From the sets given below pair the equivalent sets.
$A=\{1,2,3\}, B=\{x, y, z, t\}, C=\{a, b, c\} D=\{0, a\}$
8. If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$

Find $(A \cap B) \cap(B \cup C)$
9. Write the set $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{5}, \frac{6}{6}\right\}$ in the set builder form.
10. Write down all the subsets of the set $\{1,2,3\}$
11. Write down all possible proper subsets of the set $\{1,\{2\}\}$.
12. State whether each of the following statement is true or false.
(i) $\{2,3,4,5\}$ and $\{3,6\}$ are disjoint
(ii) $\{2,6,10\}$ and $\{3,7,11\}$ are disjoint sets
13. Write the following as interval
(i) $\{x: x \in R,-4<x \leq 6\}$
(ii) $\{x: x \in R, 3 \leq x \leq 4\}$

CONTINUED...

14. $f f=\{a, e, i, i, u\}\}=\{\{, e, i\}\}=\{\varepsilon, 0, u\}$ and $C=\{a, i, u\}$ Thenverity that $A(B-C)=(A \cap B)-(A \cap C)$
15. Aand B are two sets such that $n(A-B)=20+x, n(B-A)=3 x \operatorname{andn} n(A \cap B)=x+1$. $[4]$ Draw a Vem daggam to illustrate this iffomation. Ifn $(\mathrm{A})=n(\mathrm{~B})$, Find (i) the value ofs (iii)n(AUB)
16. There are 210 members in a dub. 100 of them drink tea and 65 drink tea but not $[4]$ coffee, eadhmember diriks tea o roffee.

Find (i) how many drink coffee,
(ii) How many drink coffee, butnottea.
17. If A, B, and C, are three stst and U is the universe set such that $(I(U)=1000$, $n(A)=300, n(B) 300 \operatorname{andn}(A \cap B)=20 \operatorname{Andn}\left(A^{\prime} A^{\prime} B^{\prime}\right)$.
18. In a survey of 60 people, it was found that 25 people read news paper $\mathrm{H}, 26$
read newspaper $T, 26$ read newspaper $I, 9$ read both H and $I, 11$ read both H and $T, 8$ read both T and $I, 3$ read all three newspaper. Find
(i) The no. of people who read at least one of the newspapers.
(ii) The no. of people who read exactly one news paper.
19. These are 20 students in a chemistry class and 30 students in a physics class. Find the number of students which are either in physics class or chemistry class in the following cases.
(i) Two classes meet at the same hour
(ii) The two classes met at different hours and ten students are enrolled in both the courses.
20. In a survey of 25 students, it was found that 15 had taken mathematics, 12 had taken [6] physics and 11 had taken chemistry, 5 had taken mathematics and chemistry, 9 had taken mathematics and physics, 4 had taken physics and chemistry and 3 had taken all three subjects.
Find the no. of students that had taken
(i) only chemistry (v) mathematics and physics but not chemistry
(ii) only mathematics
(vi) only one of the subjects
(iii) only physics
(vii) at least one of three subjects
(iv) physics and chemistry but mathematics (viii) None of three subjects.

大"゙
 Thank You and Happy Learning

