CLASS:XI
SETS
MODULE - 2

RECAP :

- A set A is said to be a subset of a set B if every element of A is also an element of B.
- Every set is a subset of itself.
: Empty set is a subset of every set.
* On real number line, various types of intervals can be described as subsets of \mathbf{R}.

* If the number of elements in a set is m, then the number of subsets is 2^{m}

POWER SET:

All The Subsets

- For the set $\{a, b, c\}$:
- The empty set $\}$ is a subset of $\{a, b, c\}$ And these are subsets: $\{a\},\{b\}$ and $\{c\}$
And these are also subsets: $\{a, b\},\{a, c\}$ and $\{b, c\}$
- And $\{a, b, c\}$ is a subset of $\{a, b, c\}$

And altogether we get the Power Set of $\{a, b, c\}$:

- $P(S)=\{\{ \},\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$

Let's go back to the ice cream example
We have four flavors of ice cream: banana, chocolate, lemon, and strawberry. How many different ways can we have them?
Let's use letters for the flavors: $\{b, c, I, s\}$. Hence, the result is.....
$P=\{\{ \},\{b\},\{c\},\{l\},\{s\},\{b, c\},\{b, l\},\{b, s\},\{c, \mid\},\{c, s\},\{l, s\},\{b, c, l\},\{b, c, s\}$, $\{b, l, s\},\{c, l, s\},\{b, c, l, s\}\}$

LET'S UNDERSTAND:

TEN BEST FRIENDS....

Imagine you have a set made up of your ten best friends:
\{Raj, Kiran, Vishal, Niraj, Suresh, Gopi, Kartik, Yash, Arjun, Manoj\}
Now let's say that Raj, Vishal, Niraj and Yash play Football.
\therefore Football= \{Raj, Vishal, Niraj,Yash\}
And Vishal, Niraj andManoj play Cricket.
\therefore Cricket $=\{$ Vishal, Niraj, Manoj $\}$

We can put their names in two separate circles, representing two sets:

operations on sets (UNION):

- You can now list your friends who play Football or Cricket.

Not everyone is in this set.....only your friends, who play Football or Cricket (or both). In other words, we combine the elements of the two sets.
This is called UNION of two sets, denoted by the symbol U.
\therefore Football \cup Cricket $=\{$ Raf, Vishal, Niraj, Yash, Manoj $\}$
We can show that in a "Venn Diagram" In a Venn Diagram:
\rightarrow The Universal set (U) is represented by a rectangle, and its subsets by circles.
Let A and B be two sets, then the union of A and B, written as $A \cup B$, is the set of all
 elements which are members of the set A or B or both.
Thus, $A \cup B=\{x: x \in A$ or $x \in B\}$

operations on sets (INTERSECTION):

Intersectionis when you must be in BOTH sets.
Inour example, that means, those who play both Football and Cricket.
This is called INTERSECTION of two sets, denoted by the symbol \cap.
\therefore Football \cap Cricket $=\{$ Vishal, Niraj $\} A \cap B$
Let A and B be two sets, then the intersection of A and B, written as $A \cap B$, is the set of all those elements which are common to both A and B.

Thus, $A \cap B=\{x: x \in A$ and $x \in B\}$

NOTE: If A and B are two sets such that $A \cap B=\varnothing$, then A and B are called disjoint sets.
For eg: $A=$ set of odd natural numbers
$B=$ set of even natural numbers

PROPERTIES OF UNION AND INTERSECTION OF SETS:

- UNION OF SETS

(i) $A \cup B=B \cup A$ (Commutative law)
(ii) $(A \cup B) \cup C=A \cup(B \cup C)$
(Associative law)
(iii) $A \cup \emptyset=A$ (Existence of identity)
(iv) $A \cup A=A$ (Idempotent law)
(v) $A \cup U=U$ and $\emptyset \cup U=U$

- INTERSECTION OF SETS
(i) $A \cap B=B \cap A$ (Commutative law)
(ii) $(A \cap B) \cap C=A \cap(B \cap C)$
(Associative law)
(iii) $A \cap \emptyset=\varnothing$ (Existence of identity)
(iv) $A \cap A=A$ (Idempotent law)
(v) $A \cap U=A$ and $\emptyset \cap U=\varnothing$

LET'S PRACTICE

Example 1: Let U be a universal set consisting of all the natural numbers less than 20 and set A and B be a subset of U defined as $A=\{2,5,9,15,19\}$ and $B=\{8,9,10,13,15,17\}$. Find $A \cup B$ and $A \cap B$.

Solution: Given

$U=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14, \mathrm{u}$

- $A=\{2,5,9,15,19\}$
- $B=\{8,9,10,13,15,17\}$
- $A \cup B=\{2,5,8,9,10,13,15,17,19\}$
$A \cap B=\{9,15\}$

Let's practice....

Example 2:
Given $A=\{x: x$ is an integer and $1 \leq x \leq 5\} \rightarrow \mathrm{A}=\{1,2,3,4,5\}$
$B=\{3,4,5,17\}$ and
$C=\{1,2,3 \ldots\}$. Find:
(i) $A \cap B=\{3,4,5\}$
(ii) $A \cap C=\{1,2,3,4,5\}$
(iii) $A \cup B=\{1,2,3,4,5,17\}$
(iv) $A \cup C=\{1,2,3 \ldots\}=C$
(v) $\mathrm{B} \cap C=\{3,4,5,17\}=B$
(vi) $B \cup C=\{1,2,3 \ldots\}=C$

Example 3:

If $A=\{x: x$ is a natural number $\}$, $B=\{x ; x$ is an even natural number $\}, C=\{x: x$ is an odd natural number\}
Find:
(i) $A \cap B=$
$\begin{aligned} &\{1,2,3,4, \ldots\} \cap\{2,4,6,8, \ldots\} \\ &=\{2,4,6,8, \ldots\}=B\end{aligned}$
(ii) $B \cup C=\{2,4,6 \ldots\} \cup\{1,3,5, \ldots\}$
$=\{1,2,3, \ldots\}=A$
(iii) $A \cap C=$ \qquad
(iv) $B \cap C=$ \qquad
(v) $A \cup B=$ \qquad

HOMEWORK

1) Write the power set of the following sets: (i) $A=\{1,2,3\}$ (ii) $B=\{\{a, b\}, c\}$.
2) Rewrite the set $A=\left\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \ldots\right\}$ set-builder form.
3) If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\}$, find:
(i) $A \cup B \cup C$
(ii) $A \cup B \cup D$
(iii) $B \cup C \cup D$
4) If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\}$, find: (i) $A \cap C \cap D \quad$ (ii) $A \cap(B \cup D)$ (iii) $(A \cap B) \cap(B \cup C)$
5) Which of the following pairs of sets are disjoint?
(i) $\{x: x$ is a natural number and $4 \leq x \leq 6\}$ and $\{1,2,3,4\}$
(ii) $\{a, e, i, o, u\}$ and $\{c, d, e, f\}$
(iii) $\{x: x$ is an even integer $\}$ and $\{x: x$ is an odd integer $\}$

RECAP

$A \cap B=\{x: x \in A$ and $x \in B\}$

$A \cup B=\{x: x \in A$ or $x \in B\}$

If $A=\{1,2,3,5\}, B=\{2,4,6,7\}$ and $C=\{2,3,4,8\}$ then find:
(i) $(B \cup C)$
(ii) $(A \cap B)$

For any three sets $A, B, \& C$, the following statements are true:
$\forall \cap$ is distributive over \cup from the left \& the right.

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

$$
(A \cup B) \cap C=(A \cap C) \cup(B \cap C)
$$

$\forall \cup$ is distributive over \cap from the left \& the right.

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& (A \cap B) \cup C=(A \cup C) \cap(B \cup C)
\end{aligned}
$$

$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

$$
\begin{aligned}
& B \cup C=\{3,4,5,6\} \cup\{6,7,8\}=\{3,4,5,6,7,8\} \\
& A \cap(B \cup C)=\{1,2,3,4\} \cap\{3,4,5,6,7,8\}=\{3,4\} \\
& A \cap B=\{1,2,3,4\} \cap\{3,4,5,6\}=\{3,4\} \\
& A \cap C=\{1,2,3,4\} \cap\{6,7,8\}=\{ \}=\emptyset \\
& (A \cap B) \cup(A \cap C)=\{3,4\} \cup \emptyset=\{3,4\} \\
& \therefore A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

$$
\begin{aligned}
& B \cap C=\{3,4,5,6\} \cap\{6,7,8\}=\{6\} \\
& A \cup(B \cap C)=\{1,2,3,4\} \cup\{6\}=\{1,2,3,4,6\} \\
& A \cup B=\{1,2,3,4\} \cup\{3,4,5,6\}=\{1,2,3,4,5,6\} \\
& A \cup C=\{1,2,3,4\} \cup\{6,7,8\}=\{1,2,3,4,6,7,8\} \\
& (A \cup B) \cap(A \cup C)=\{1,2,3,4,5,6\} \cap\{1,2,3,4,6,7,8\}=\{1,2,3,4,6\} \\
& \therefore A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

Distributive law of sets

We have to prove $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ using Venn Diagram.

($B \cup C$)

$A \cap(B \cup C)$
L.H.S. =
R.H.S.

Hence
Drnvind
$\therefore A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Ten Best Friends

You could have a set made up of your ten best friends:

- \{alex, blair, casey, drew, erin, francis, glen, hunter, ira, jade\}

Each friend is an "element" (or "member") of the set.
Now let's say that alex, casey, drew and hunter play Soccer.
Soccer $=$ \{alex, casey, drew, hunter $\}$ And casey, drew and jade play Tennis.
Tennis = \{casey, drew, jade $\}$

Difference of sets

Difference of set A and B means all elements of set A which are not in B

$$
\begin{aligned}
& \text { Let } A=\{1,2,3,4\}, B=\{3,4,5,6\} \\
& A-B=\{1,2\}
\end{aligned}
$$

For B - A

$B-A=\{3,4,5,6\}-\{1,2,3,4\}$
$B-A=\{5,6\}$
As B - A = All elements of B which are not in A

Symbolically,
$A-B=\{x: x \in A$ and $x \notin B\}$ and vice versa.

Example

Let $A=\{1,2,3,4,5,6\}, B=\{2,4,6,8\}$. Find $A \cap B, A-B$ and $B-A$.
$A \cap B=\{1,2,3,4,5,6\} \cap\{2,4,6,8\}$
$=\{2,4,6\}$
$A-B=\{1,3,5\}$
$B-A=\{8\}$

Possible cases for the difference of two sets:

The set of elements of U which are not elements of set A is called the complement of A.
A^{c} or A^{\prime}
'the complement of set A '

Let $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{6,7,8\}$
and Universal set $=U=\{1,2,3,4,5,6,7,8,9,10\}$
$A^{\prime}=U-A$
$A^{\prime}=\{1,2,3,4,5,6,7,8,9,10\}-\{1,2,3,4\}$

$$
A^{\prime}=\{x \mid x \in U \text { and } x \notin A\}
$$

$A^{\prime}=\{5,6,7,8,9,10\}$

Properties of Complement

1. Complement laws:
(i) $A \cup A^{\prime}=U$ (ii) $A \cap A^{\prime}=\varnothing$
2. Law of double complementation :
$\left(A^{\prime}\right)^{\prime}=A$
3. Laws of empty set and universal set $\emptyset^{\prime}=U$ and $U^{\prime}=\varnothing$
4. De Morgan's law :
(i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}(i i)(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

Example:

1. $U=\{3,4,5,7,8,9, a, b\}$
$A=\{a, 3,7,9\}$

- $A^{\prime}=\{4,5,8,6\}$
- $A \cup A^{\prime}=\{a, 3,7,9\} \cup\{4,5,8, b\}=\{3,4,5,7,8,9, a, b\}=\cup$
- $A \cap A^{\prime}=\{a, 3,7,9\} \cap\{4,5,8, b\}=\varnothing$
- $A^{\prime}=\{4,5,8, b\} \Rightarrow\left(A^{\prime}\right)^{\prime}=\{a, 3,7,9\}=A$

Proving $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

$(A \cup B)^{\prime}$

De Morgan's Law

De Morgan's Law are based on complement of sets

$$
\begin{aligned}
& \text { 1. }(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} \\
& \text { 2. }(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
\end{aligned}
$$

Let us prove the law by Venn Diagrams

$\therefore(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

Lets Try

IfU $=\{1,2,3,4,5,6,7,8,9,10\}, \quad A=\{1,2,3,5\}$, $B=\{2,4,6,7\}$ and $C=\{2,3,4,8\}$ then find:
(i) $(B \cup C)^{\prime}$
(ii) $(C-A)^{\prime}$
(iii) $n(A \cup C)$
(iv) $A-(B \cup C)$
(v) $A \cap B$
(vi) $A \cup(B \cap C)$

H.W. EX. 1.5

ASSIGNMENT QUESTIONS

1. Describethesetin Roseterom |x:xisa tro digit mumber scid hat the sum ofits digitis 8 |
2. Are the following pair ofsets squal Giver reasons.
$A=\{$ xxis aleterint the wordfollow\}
$B=$ \{yyis a letererinthe word Woirs\}

3. Fillintruebanks.
(i) $A \cup A^{\prime}=-\ldots$
(i) $(A \cup B)^{\prime}=$
(ii) $(A)^{\prime}=\cdots \cdots \cdots$
(ii) $(A \cap B)^{\prime}=\cdots \cdots \cdots$
(iii) $A \cap A^{\prime}=\cdots \cdots$
4. List all the element of the set $A=\left\{x: x\right.$ is an integer $\left.x^{2} \leq 4\right\}$
5. From the sets given below pair the equivalent sets.
6. If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$

Find $(A \cap B) \cap(B \cup C)$
9. Write the set $\left\{\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 5 & 5 & 6 \\ 3 & 4 & 5 & 5 \\ 5 & 6\end{array}\right\}$ in the set builder form.
10. Write down all the subsets of the set $\{1,2,3\}$
11. Write down all possible proper subsets of the set $\{1,\{2\}\}$,
12. State whether each of the following statement is true or false.
(i) $\{2,3,4,5\}$ and $\{3,6\}$ are disioint
(ii) $\{2,6,10\}$ and $\{3,7,11\}$ are disjoint sets
13. Write the following as interval
(i) $\{x: x \in R,-4<x \leq 6\}$
(ii) $\{x: x: x, 3 \leq \leq \leq \leq 4\}$

CONTHNUED

 (i) Heralue ofis (iiln (AUB)
 cafte exdmumper dinds tha corafee

Find (i) hornayy didincoffere
[ii) Hownayy ind offect utroctax

18. In a survey of 60 people, it was found that 25 people read news paper $H, 26$
read newspaper T, 26 read newspaper $I, 9$ read both H and $I, 11$ read both H
and $T, 8$ read both T and 1,3 read all three newspaper. Find
(i) The no. of people who read at least one of the newspapers.
(ii) The no, of people who read exactly one news paper.
19. These are 20 students in a chemistry class and 30 students in a physics class. Find [6] the number of students which are either in physics class or chemistry class in the following cases.
(i) Two classes meet at the same hour
(ii) The two classes met at different hours and ten students are enrolled in both the courses.
20. In a survey of 25 students, it was found that 15 had taken mathematics, 12 had taken [6] physics and 11 had taken chemistry, 5 had taken mathematics and chemistry, 9 had taken mathematics and physics, 4 had taken physics and chemistry and 3 had taken all three subjects.
Find the no of students that had taken
(i) only chemistry (v) mathematics and physics but not chemistry
(ii) only mathematics
(vi) only one of the subjects
(vii) at least one of three subjects
(iv) physics and chemistry but mathematics (viii) None of three subjects.

$\operatorname{Set} A$

A and B are disjoint sets

Both A and $B \quad A \cap B$
A intersect B

A^{\prime} the complement of A

B is proper $\quad B \subset A$ subset of A

Either \mathbf{A} or $B \quad A \cup B$ A union B

THANK
YOU

安 Thank You and Happy Learning

