CLASS:XI

SETS

M O D ULE-1

$$
\begin{aligned}
& \{\bullet, \boldsymbol{\square}, \mathbf{\Delta}, 0\} \\
& \{1,2,4,8\} \\
& \left\{\begin{array}{l}
1,5,3,4, ~
\end{array}\right\}
\end{aligned}
$$

Concept of Sets in everyday life

A set is a well－defined collection of objects．
Eg：（i）The rivers of India
（ii）Months of the year beginning with＇ J ＇
The above two are examples sets，whereas，
（iii）Five most dangerous animals

（iv）Three most entertainir movies of Bollywood
（iii）and（iv）are collections which are not well－ defined．

Hence，（iii）and（iv）are not examples of sets．

Representation of a set

The objects in a set are called elements or members of the set. We generally use capital letters to denote a set.

Eg : Let $A=\{1,2,3,4\}$
Here, 4 is an element of the set \mathbf{A}, written as $4 \in A$ (4 belongs to
A)
whereas, $\mathbf{6}$ is not an element of \mathbf{A}, written as $6 \notin A$ ($\mathbf{6}$ does not belong to A)

- Set of numbers commonly used in mathematics are :

N : Set of natural numbers
Z: Set of integers
Q : Set of rational numbers
R : Set of real numbers

Representation of a set

(i) ROSTER FORM:

In this form, the elements of a set are listed and separated by commas within braces \{ \}
Eg: set of all vowels in English alphabet is written as
$\mathrm{A}=\{a, e, i, o, u\}$

Note

- In roster form, order in which elements are listed, is immaterial.
- The elements are not repeated in this form.

(ii) SET-BUILDER FORM:

In this form, we describe the common property possessed by all the elements of a set, which is not possessed by any element outside the set.
Eg: set of all vowels in English alphabet is written as
$A=\{x: x$ is a vowel in English alphabet \}.

Let's practice.......

) Write the following sets in roster form:
(i) $A=\left\{x: x\right.$ is a positive integer and $\left.x^{2}<40\right\}$ $A=\{1,2,3,4,5,6\}$
(ii) $B=\{x: x$ is a natural number which divides 42$\}$

$$
B=\{1,2,3,6,7,14,21,42\}
$$

(iii) $C=\left\{x: x\right.$ is a solution of the equation $\left.x^{2}+x-2=0\right\}$ B $=\{1,-2\}$
2) Write the following sets in set- builder form:
(i) $A=\{1,4,9,16,25$,

$A=\left\{x: x=n^{2}\right.$, where $\left.n \in N\right\}$
(ii) $B=\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}\right\}$
$B=\left\{x: x=\frac{n}{n+1}\right.$, where $n \in N$ and $\left.n \leq 6\right\}$
(iii) $\mathbf{A}=\{17,26,35,44,53,62,71,80\}$
$\mathrm{A}=\{x: x$ is a two- digit natural number sum of whose digits is
8\}

Match each of the set on the left in the roster form with the same set on the right in setbuilder form :
$\{P, R, I, N, C, A, L\}$ divisor of
(iii) $\{1,2,3,6,9,18\}$
(iv) $\{3,-3\}$

PRINCIPAL\}
(a) $\{x: x$ is a positive integer and
(b) $\left\{x: x\right.$ is an integer and $\left.x^{2}-9=0\right\}$
(c) $\{x: x$ is an integer and $x+1=1\}$
(d) $\{x: x$ is a letter of the word

Types of sets :

) Empty Set : A set which does not contain any element is called an empty set or null set or void set, denoted by the symbol \varnothing or \{ \}.

Eg: Set of all even prime numbers greater than 2.
This is an empty set because $\mathbf{2}$ is the only even prime number.

- 2) Finite and Infinite sets: A set which is empty or consists of a definite number of elements is called finite otherwise, the set is called infinite.

Eg: (i) Let S be the set of solutions of the equation $x^{2}-16=0$. Here, $\mathbf{S}=\{-4,4\}$ which means \mathbf{S} is finite.
(ii) Let G be the set of points on a line. Then G is infinite.

Note: It is not possible to write all the elements of an infinite set in roster form. But, we can represent some infinite sets in roster form :

* Set of natural numbers $\quad\{1,2,3, \ldots$.
* Set of integers
$\{\ldots . .-3,-2,-1,0,1,2,3, \ldots \ldots$.

Types of sets (contd...)

) Equal Sets: Two sets A and B are said to be equal if they have exactly the same elements, and is written as $A=B$.

Eg: Let $A=\{1,2,3,4\}$ and $B=\{3,1,4,2\}$. Then $A=B$.
Note: A set does not change if elements of the set are written in a different order or one or more elements of the set are repeated. For Eg: The sets $A=\{1,2,3\}$ and $B=\{2,2,1,3,3\}$ are equal.
4) Equivalent Sets: Two sets A and B are said to be equivalent if the number of elements in A is equal to the number of elements in B.

Eg: The sets $A=\{1,2,3,4,5\}$ and $B=\{a, e, i, o, u\}$ are equivalent sets as $n(A)=n(B)=5$. Here,
$n(A)$ means number of elements in set \mathbf{A} or cardinal number of set A,
$n(B)$ means number of elements in set \mathbf{B} or cardinal number of set B.

Let's practice.......

Is the set A equal to set B in the following?
(i) $A=\{2,3\}, B=\left\{x: x\right.$ is a solution of $\left.x^{2}+5 x+6=0\right\}$ $\begin{aligned} x^{2}+5 x+6=0 \Rightarrow & (x+2)(x+3)=0 \\ & \Rightarrow x=-2,-3\end{aligned}$
\Rightarrow Solution set of $B=(-2,-3)$
But $A=\{2,3\}$. Hence $A \neq B$
(ii) $\mathrm{A}=\{x: x$ is a letter of the word FOLLOW $\}$ $\mathrm{B}=\{x: x$ is a letter of the word WOLF $\}$ $A=\{F, O, L, W\}$ and $B=\{W, O, L F\}$ Hence $A=B$.

RECAP.......

\square What is a set?
Roster form
\square Representation of a set
Set-builder form
\square Types of sets

Empty set Finite set Infinite set Equal sets Equivalent sets

SUBSET:

A set A is said to be a subset of a set B if every element of A is also an element of B.

In other words, $A \subset B$ if $a \epsilon A \Rightarrow a \in B$
Here, the symbol \subset stands for
' is a subset of ' or " is contained in'.
If \mathbf{A} is not a subset of \mathbf{B}, we write $A \nsubseteq B$.

If $A \subset B$ and $A \neq B$, then \mathbf{A} is called a proper subset of B and B is called superset of A.

NOTE : (i) Every set is a subset of itself.
(ii) Empty set is a subset of every set.

LET'S LOOK AT AN EXAMPLE :

Example: Let \mathbf{A} be all multiples of $\mathbf{4}$ and \mathbf{B} be all multiples of $\mathbf{2}$. Is A a subset of B ? And is B a subset of A ?

The sets are:

- $A=\{\ldots,-8,-4,0,4,8, \ldots\}$
- $B=\{\ldots,-8,-6,-4,-2,0,2,4,6,8, \ldots\}$

By pairing off members of the two sets, we can see that every member of A is also a member of B, but not every member of B is a member of A :

So:
A is a subset of B, but B is not a subset of A

SUBSETS OF REAL NUMBERS:

We know that the following sets are subsets of the set of real numbers (R) :
(i) Set of natural numbers, $N=\{1,2,3$.. $\}$
(ii) Set of integers, $Z=\{\ldots .-3,-2,-1,0,1,2,3, \ldots$.
(iii) Set of rational numbers, $Q=x: x=\frac{p}{\dot{q}}$ where $p, q \in Z$ and $q \neq 0$
(iv) Set of irrational numbers, $\hat{Q}=\{x: x \in R, x \notin \quad\}$

Clearly,
$N \subset Z \subset Q \subset R, Q^{\prime} \subset R$

INTERVALS AS SUBSETS OF R:

On the real number line, the following types of intervals described as subsets of R, are shown in the figure below:
Let $a, b \in R$ and $a<b$. Then,
$[a, b]=\{x: a \leq x \leq b\}$ is an interval from a to b, including points a and b.
$(a, b)=\{x: a<x<b\}$ is an interval from a to b, excluding points a and b.
$a, b=\{x: a \leq x<b\}$ is an interval from a to b, including a but excluding b.
$a, b=\{x: a<x \leq b$ iss an interval from $a b b$, excluding a but including b.

closed interval $[a, b]$

open interval (a, b)

half-closed interval $[a, b)$ half-closed interval $(a, b]$

LET'S PRACTICE......

The set $\{x: x \in R,-5<x \leq 7\}$, written in set-builder form, can be written in the form of interval as $-5,7$ and the interval -3, 5 can be written in set-builder form as $\{x: x \in R,-3 \leq x<5\}$

Let $A=\{1,2,\{3,4\}, 5$, which of the following statements are incorrect?
(i) $\{3,4\} \subset A \rightarrow$ Incorrect as $\{3,4\}$ is an element of set \mathbf{A}.
(ii) $\{3,4\} \in A \rightarrow$ Correct as $\{3,4\}$ is contained in set \mathbf{A}.
(iii) $\varnothing \in A \rightarrow$ Incorrect as \varnothing is not an element of the set \mathbf{A}.
(N) $\{\varnothing\} \subset A \rightarrow \mathbf{I n c o r r e c t a s} \varnothing$ is by itself a set.
(v) $\mathfrak{x}\{4 \quad\}\} \subset A \rightarrow$ Correct as $\{3,4\}$ is contained in set \mathbf{A}.
(vi) $\{1,2,3 \in A \rightarrow$ Incorrect as $\{3\}$ is not an element of set A.
(vii) $\{1,2,5, \subset A \rightarrow$ Correct as all the elements of the set $\{1,2\}$,

5
are present in set A.

Homework :
Ex 1.1 to be completed (Q. 3 \& Q. 4 in notebook) and the rest in the text book itself.
Ex 1.2 to be completed
Ex 1.3 - Q.No.1, 2, 6, 7.

Thank You and Happy Learning

STAY
HOME

