

CLASS:XI

MODULE-1

Concept of Sets in everyday life

Math is in the grocery store

A set is a well- defined collection of objects. Eg: (i)The rivers of India (ii) Months of the year beginning with 'J' The above two are examples sets, whereas, (iii) Five most dangerous $\{1, 2, 4, 8\}$ animals (iv)Three most entertainir movies of Bollywood

(iii) and (iv) are collections which are not welldefined.

Hence, (iii) and (iv) are not examples of sets.

Representation of a set

The objects in a set are called elements or members of the set. We generally use capital letters to denote a set.

```
Eg : Let A = \{1,2,3,4\}
Here, 4 is an element of the set A, written as 4 \in A (4 belongs to A)
whereas, 6 is not an element of A, written as 6 \notin A (6 does not belong to A)
```

- Set of numbers commonly used in mathematics are :
 - N : Set of natural numbers
 - Z : Set of integers
 - **Q**: Set of rational numbers
 - **R : Set of real numbers**

Representation of a set

(i) <u>ROSTER FORM</u>:

In this form, the elements of a set are listed and separated by commas within braces { } Eg: set of all vowels in English alphabet is written as $A = \{a, e, i, o, u\}$

Note:

- In roster form, order in which elements are listed, is immaterial.
- The elements are not repeated in this form.

(ii) <u>SET-BUILDER FORM</u>

In this form, we describe the common property possessed by all the elements of a set, which is not possessed by any element outside the set. Eg: set of all vowels in English alphabet is written as $A = \{x: x \text{ is a vowel in English}$ alphabet $\}$.

Let's practice.....

1) Write the following sets in roster form: (i) $A = \{x: x \text{ is a positive integer and } x^2 < 40\}$ $A = \{1, 2, 3, 4, 5, 6\}$ (ii) $B = \{x: x \text{ is a natural number which divides } 42\}$ $B = \{1, 2, 3, 6, 7, 14, 21, 42\}$ (iii) $C = \{x: x \text{ is a solution of the equation } x^2 + x - 2 = 0\}$ $\mathbf{B} = \{1, -2\}$ 2) Write the following sets in set-builder form: (i) $A = \{1, 4, 9, 16, 25, \dots \}$ $A = \{x: x = n^2, \text{ where } n \in N\}$ (ii) $B = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}\right\}$ $B = \left\{ x \colon x = \frac{n}{n+1} \text{, where } n \in N \text{ and } n \le 6 \right\}$ (iii) $\mathbf{A} = \{17, 26, 35, 44, 53, 62, 71, 80\}$ $A = \{x: x \text{ is a two-digit natural number sum of whose digits is}\}$ 8}

Match each of the set on the left in the roster form with the same set on the right in setbuilder form :

{*P*, *R*, *I*, *N*, *C*, *A*, *L*} divisor of

(ii) {0}

(iii) {1,2,3,6,9,18}

(iv) {3, -3} PRINCIPAL} (a) $\{x: x \text{ is a positive integer and } \}$

(b) $\{x: x \text{ is an integer and } x^2 - 9 = 0\}$

18

(c) $\{x : x \text{ is an integer and } x + 1 = 1\}$

(d) $\{x: x \text{ is a letter of the word }$

Types of sets :

) Empty Set : A set which does not contain any element is called an empty set or null set or void set, denoted by the symbol Ø or { }. Eg: Set of all even prime numbers greater than 2.

This is an empty set because 2 is the only even prime number.

 2) Finite and Infinite sets: A set which is empty or consists of a definite number of elements is called finite otherwise, the set is called infinite.

Eg: (i) Let S be the set of solutions of the equation $x^2 - 16 = 0$. Here, S= {-4, 4} which means S is finite. (ii) Let G be the set of points on a line. Then G is infinite.

Note: It is not possible to write all the elements of an infinite set in roster form. But, we can represent some infinite sets in roster form : Set of natural numbers { 1, 2, 3,} Set of integers { -3, -2, -1, 0, 1, 2, 3,.....}

Types of sets (contd...)

) Equal Sets: Two sets A and B are said to be equal if they have exactly the same elements, and is written as A = B.

Eg: Let A= $\{1, 2, 3, 4\}$ and B= $\{3, 1, 4, 2\}$. Then A = B. Note: A set does not change if elements of the set are written in a different order or one or more elements of the set are repeated. For Eg: The sets A = $\{1, 2, 3\}$ and B = $\{2, 2, 1, 3, 3\}$ are equal.

4) Equivalent Sets: Two sets A and B are said to be equivalent if the number of elements in A is equal to the number of elements in B.

Eg: The sets $A = \{1, 2, 3, 4, 5\}$ and $B = \{a, e, i, o, u\}$ are equivalent sets as n(A) = n(B) = 5.

Here,

n(A) means number of elements in set A or cardinal number of set A,

n(B) means number of elements in set B or cardinal number of set B.

Let's practice.....

Is the set A equal to set B in the following?

(i)
$$A = \{2,3\}, B = \{x: x \text{ is a solution of } x^2 + 5x + 6 = 0\}$$

 $x^2 + 5x + 6 = 0 \Rightarrow (x + 2)(x + 3) = 0$
 $\Rightarrow x = -2, -3$
 \Rightarrow Solution set of $B = (-2, -3)$
But $A = \{2,3\}$. Hence $A \neq B$
(ii) $A = \{x: x \text{ is a letter of the word } FOLLOW\}$
 $B = \{x: x \text{ is a letter of the word } WOLF\}$
 $A = \{F, O, L, W\}$ and $B = \{W, O, L F\}$
Hence $A = B$.

RECAP.....

SUBSET :

NOTE : (i) Every set is a subset of itself. (ii) Empty set is a subset of every set.

LET'S LOOK AT AN EXAMPLE :

Example: Let A be all multiples of 4 and B be all multiples of 2. Is A a subset of B? And is B a subset of A?

The sets are:

• B = {..., -8, -6, -4, -2, 0, 2, 4, 6, 8, ...}

By pairing off members of the two sets, we can see that every member of A is also a member of B, but not every member of B is a member of A:

$$A = \{\dots, -8, -4, 0, 4, 8, \dots\}$$
$$B = \{\dots, -8, -6, -4, -2, 0, 2, 4, 6, 8, \dots\}$$

So:

A is a subset of B, but B is not a subset of A

SUBSETS OF REAL NUMBERS:

We know that the following sets are subsets of the set of real numbers(R):

- (i) Set of natural numbers, $N = \{1, 2, 3..\}$
- (ii) Set of integers, $Z = \{\dots -3, -2, -1, 0, 1, 2, 3, \dots\}$
- (iii) Set of rational numbers, Q = x: $x = \frac{p}{2}$ where $p, q \in Z$ and $q \neq 0$

(iv) Set of irrational numbers, $Q = \{x: x \in R, x \notin \}$

Clearly,

 $N \subset Z \subset Q \subset R, Q' \subset R$

INTERVALS AS SUBSETS OF R:

On the real number line, the following types of intervals described as subsets of *R*, are shown in the figure below:

Let $a, b \in R$ and a < b. Then,

 $[a,b] = \{x: a \le x \le b\}$ is an interval from *a* to *b*, including points *a* and *b*.

 $(a,b) = \{x: a < x < b\}$ is an interval from *a* to *b*, excluding points *a* and *b*.

 $a, b = \{x: a \le x < b\}$ is an interval from a to b, including a but excluding b.

 $a, b = \{x: a < x \le b \text{ is an interval from } a \text{ to } b, \text{ excluding } a \text{ but including } b.$

half-closed interval [a, b) half-closed interval (a, b]

LET'S PRACTICE.....

The set { $x: x \in R, -5 < x \le 7$ }, written in set-builder form, can be written in the form of interval as -5, 7 and the interval -3, 5 can be written in set-builder form as { $x: x \in R, -3 \le x < 5$ }

Let $A = \{1, 2, \{3, 4\}, 5\}$, which of the following statements are incorrect? (i) $\{3, 4\} \subset A \rightarrow$ Incorrect as $\{3, 4\}$ is an element of set A. (ii) $\{3, 4\} \in A \longrightarrow \text{Correct as } \{3, 4\}$ is contained in set A. (iii) $\emptyset \in A \longrightarrow$ Incorrect as \emptyset is not an element of the set A. (M) $\{\emptyset\} \subset A \rightarrow$ Incorrect as \emptyset is by itself a set. (v) $\{4\} \subset A \longrightarrow Correct as \{3, 4\}$ is contained in set A. (vi) $\{1, 2, 3\} \subset A \rightarrow$ Incorrect as $\{3\}$ is not an element of set A. (vii) $\{1, 2, 5\} \subset A \rightarrow Correct$ as all the elements of the set $\{1, 2, \}$ are present in set A.

Homework :

- Ex 1.1 to be completed (Q.3 & Q.4 in notebook)
- and the rest in the text book itself.
- Ex 1.2 to be completed
- Ex 1.3 Q.No.1, 2, 6, 7.

