PROBABILITY

$\frac{0}{\text { W) }}=\frac{1}{6}=16.6 \%$ 뭉웅

$$
\begin{aligned}
& \text { sidN } \\
& \frac{208 \%}{4888}=\frac{5}{20}=25 \%
\end{aligned}
$$

RECAP

Probability of an event $\mathrm{P}(\mathrm{A})=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}$
If A is any event, then $\mathrm{P}(\operatorname{not} \mathrm{A})=1-\mathrm{P}(\mathrm{A})$

$$
\mathrm{P}(\mathrm{~A})+\mathrm{P}(\operatorname{not} \mathrm{~A})=1
$$

If Aand B are mutually exclusive, then $P(A o r B)=P(A)+P(B)$

If A and B are any two events, then $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$ equivalently, $\mathbf{P}(\mathbf{A} \cup \mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})-\mathbf{P}(\mathbf{A} \cap \mathbf{B})$

$$
\begin{aligned}
& P\left(E^{C} \cap F^{C}\right)=P\left((E \cup F)^{C}\right)=1-P(E \cup F) \\
& P\left(E^{C} \cup F^{C}\right)=P\left((E \cap F)^{C}\right)=1-P(E \cap F)
\end{aligned}
$$

8. Three coins are tossed once. Find the probability of getting
(i) 3 heads
(ii) 2 heads
(iii) atleast 2 heads
(iv) atmost 2 heads
(v) no head
(vi) 3 tails
(vii) exactly two tails
(viii) no tail
(ix) atmost two tails
$S=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{TH}, \mathrm{HTT}, \mathrm{THT}$, TTH, TTT $\}$

$$
\mathrm{P}(\mathrm{~A})=\frac{\text { Number of outcomes favourable to } \mathrm{A}}{\text { Total number of possible outcomes }}=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}
$$

$$
n(S)=2^{3}=8
$$

(i) Let B be the event of the occurrence of 3 heads. Accordingly, $B=\{\mathrm{HHH}\}$

$$
\therefore \mathrm{P}(\mathrm{~B})=\frac{n(\mathrm{~B})}{n(S)}=\frac{1}{8}
$$

(ii) Let C be the event of the occurrence of 2 heads. Accordingly, $\mathrm{C}=\{\mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$

$$
\therefore \mathrm{P}(\mathrm{C})=\frac{n(\mathrm{C})}{n(S)}=\frac{3}{8}
$$

(iii) Let D be the event of the occurrence of at least 2 heads.

$$
\mathrm{D}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\} \quad \therefore \mathrm{P}(\mathrm{D})=\frac{n(\mathrm{D})}{n(S)}=\frac{4}{8}=\frac{1}{2}
$$

(iv) atmost 2 heads

(iv) Let E be the event of the occurrence of at most 2 heads.

(v) no heads

Accordingly, $\mathrm{E}=\{\mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$
$\therefore \mathrm{P}(\mathrm{E})=\frac{n(\mathrm{E})}{n(S)}=\frac{7}{8}$

(vi) 3 tails

(vi) Let G be the event of the occurrence of 3 tails. Accordingly, $\mathrm{G}=\{\mathrm{TTT}\}$
(v) Let F be the event of the occurrence of no head.

Accordingly, $\mathrm{F}=(\mathrm{TTT}\}$
$\therefore \mathrm{P}(\mathrm{F})=\frac{n(\mathrm{~F})}{n(S)}=\frac{1}{8}$

(vii) exactly two tails

$$
\therefore \mathrm{P}(\mathrm{G})=\frac{n(\mathrm{G})}{n(S)}=\frac{1}{8}
$$

(vii) no tail

(vii) Let H be the event of the occurrence of exactly 2 tails. Accordingly, $\mathrm{H}=\{\mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}\}$

$$
\therefore \mathrm{P}(\mathrm{H})=\frac{n(\mathrm{H})}{n(S)}=\frac{3}{8}
$$

(viii) Let I be the event of the occurrence of no tail. Accordingly, $\mathrm{I}=\{\mathrm{HHH}\}$

(ix) atmost two tails.

$\therefore \mathrm{P}(\mathrm{I})=\frac{n(\mathrm{I})}{n(S)}=\frac{1}{8}$
(ix) Let J be the event of the occurrence of at most 2 tails. Accordingly, $\mathrm{I}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}\}$ $\therefore \mathrm{P}(\mathrm{J})=\frac{n(\mathrm{~J})}{n(S)}=\frac{7}{8}$

Ex 16.3

14. Given $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$. Find $P(A$ or $B)$, if A and B are mutually exclusive events.

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B}) & =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B}) \quad \text { Since } \mathrm{A} \text { and } \mathrm{B} \text { are mutually exclusive events. } \\
& =\frac{3}{5}+\frac{1}{5}=\frac{4}{5}
\end{aligned}
$$

15. If E and F are events such that $P(E)=\frac{1}{4}, P(F)=\frac{1}{2}$ and $P(E$ and $F)=\frac{1}{8}$, find (i) $\mathrm{P}(\mathrm{E}$ or F$)$, (ii) $\mathrm{P}($ not E and not F$)$.

$$
\begin{aligned}
P(E) & =\frac{1}{4}, P(F)=\frac{1}{2} \quad P(E \cap F)=\frac{1}{8} \\
P(E \cup F) & =P(E)+P(F)-P(E \cap F) \\
& =\frac{1}{4}+\frac{1}{2}-\frac{1}{8}=\frac{5}{8}
\end{aligned}
$$

(ii) $\mathrm{P}($ not E and not F$)=\mathrm{P}(\overline{\mathrm{E}} \cap \overline{\mathrm{F}})$

$$
\begin{aligned}
& =P(\overline{E \cup F}) \\
& =1-P(E \cup F) \\
& =1-\frac{5}{8}=\frac{8-5}{8}=\frac{3}{8}
\end{aligned}
$$

16. Events E and F are such that $\mathrm{P}($ not E or not F$)=0.25$, State whether E and F are mutually exclusive.

Ans. Given: $\quad \mathrm{P}(\overline{\mathrm{E}} \cup \overline{\mathrm{F}})=0.25$

$$
\begin{aligned}
& \Rightarrow \mathrm{P}(\overline{\mathrm{E} \cap \mathrm{~F}})=0.25) \\
& \Rightarrow 1-\mathrm{P}(\mathrm{E} \cap \mathrm{~F})=0.25 \\
& \Rightarrow \mathrm{P}(\mathrm{E} \cap \mathrm{~F})=1-0.25=0.75 \neq 0
\end{aligned}
$$

<Therefore, E and F are not mutually exclusive events.

Ex 16.3

19. In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7 . The probability of passing at least one of them is 0.95 . What is the probability of passing both?

Ans. Let A be the event that the student passes the first examination B be the event that the students passes the second examination.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})=0.8 \\
& \mathrm{P}(\mathrm{~B})=0.7
\end{aligned}
$$

$$
P(A \cup B)=0.95
$$

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

probability of passing both $>\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$$
\Rightarrow 0.95=0.8+0.7-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})
$$

$$
\Rightarrow \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=1.5-0.95=0.55
$$

Fill in the blank in the following table:

	$\mathrm{P}(\mathrm{A})$	$\mathrm{P}(\mathrm{B})$	$\mathrm{P}(A \cap B)$	$\mathrm{P}(A \cup B)$
(i)	0.35	\ldots	0.25	0.6
(ii)	0.5	0.35	\ldots	0.7

大ั"

Thank You and Happy Learning

