

PROBABILITY

CしASS 11 MODUEE 2

Sample space: The set of all possible outcomes Sample points: Elements of sample space

RECAP

- Any possible outcome of a random experiment is called an event.
- The probability of an event, denoted $P(E)$
- Example:-
- Performing an experiment is called trial and outcomes are termed as event.

A 10 -sided die whose faces are numbered from 1 to 10 is rolled. Below are two possible events

Event A: obtaining a number greater than 5 Event B: obtaining an even number

$$
S=\{1,2,3,4,5,6,7,8,9,10\}
$$

Event

Definition: Any subset E of a sample space S is called an event.
E.g. Tossing a coin two times.

S $=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$

Sample space
$\left\{\begin{array}{llll}H, H & H, T & T, H & T, T\end{array}\right\}$
$n=$ number of coins tossed
$2^{\text {n }}$ outcomes

Set E is a subset of the sample space S

TYPES OF EVENTS

1. Impossible and Sure Events: The empty set φ and the sample space S describe events. In fact φ is called an impossible event and S, i.e., the whole sample space is called the sure event.
-For e.g. In the experiment of rolling a die.
$\square S=\{1,2,3,4,5,6\}$
\square cet E be the event " the number appears on the die is a multiple of 7 ".
\square Thus, the event $E=\varphi$ is an impossible event.
-Let us take another event F "the number turns up is odd or even"
$\square F=\{1,2,3,4,5,6\}=$,
\square Thus, the event $F=S$ is a sure event.
2. Simple Event: If an event E has only one sample point of a sample space, it is called a simple (or elementary) event.
\square For example in the experiment of tossing two coins

- $\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
c
\square There are four simple events corresponding to this sample space.
\square These are $\mathrm{E} 1=\{\mathrm{HH}\}, \mathrm{E} 2=\{\mathrm{HT}\}, \mathrm{E} 3=\{\mathrm{TH}\}$ and $\mathrm{E} 4=\{\mathrm{TT}\}$

Sample space

$$
H, H \quad H, T \quad T, H \quad T, T
$$

$n=$ number of coins tossed

2^{2} outcomes
3. Compound Event: If an event has more than one sample point, it is called a Compound event.

For example, in the experiment of "tossing a coin thrice"
The events E: 'Exactly one head appeared'
F: 'Atleast one head appeared'
G: 'Atmost one head appeared' etc. are all compound events.
$\square \mathrm{E}=\{\mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}\}$
$\mathrm{F}=\{\mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HHH}\}$
$\mathrm{G}=\{\mathrm{TTT}, \mathrm{THT}, \mathrm{HTT}, \mathrm{TTH}\}$
\square Each of the above subsets contain more than one sample point, hence they are all compound events.

Algebra of events

1. Complementary Event: For every event A, there corresponds another event A' called the complementary event to A. It is also called the event 'not A'.
\square For example, take the experiment 'of tossing three coins
$\square \mathrm{S}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$

\square Let $\mathrm{A}=\{\mathrm{HTH}, \mathrm{HHT}, \mathrm{THH}\}$ be the event 'only one tail appears'
Clearly for the outcome HTT, the event A has not occurred.
\square we may say that the event 'not A' has occurred.
Thus, with every outcome which is not in A, we say that 'not A' occurs.
$\square \mathrm{A}^{\prime}=\{\mathrm{HHH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$
\square or $\mathrm{A}^{\prime}=\{\omega: \omega \in \mathrm{S}$ and $\omega \notin \mathrm{A}\}=\mathrm{S}-\mathrm{A}$.
2. The Event 'A or B': $\mathrm{A} \cup \mathrm{B}=\{\mathrm{x}: \mathrm{x} \in \mathrm{A}$ or $\mathrm{x} \in \mathrm{B}\}$
3. The Event ' A and B ': $A \cap B \in\{x: x \in A$ and $x \in B\}$

4. The Event A but not B ':

$$
\mathrm{A}-\mathrm{B}=\{\mathrm{x}: \mathrm{x} \in \mathrm{~A} \text { but } \mathrm{x} \notin \mathrm{~B}\}=\mathrm{A} \cap \mathrm{~B}^{\prime}
$$

Mutually Exclusive Events: Two events A and B are called mutually exclusive events if the occurrence of any one of them excludes the occurrence of the other event, i.e., if they can not occur simultaneously. In this case the sets A and B are disjoint.

For egg. In the experiment of rolling a die
S $=\{1,2,3,4,5,6\}$

- A 'an odd number appears' and B 'an even number appears'

A $=\{1,3,5\}$ and $B=\{2,4,6\}$
Clearly $\mathrm{A} \cap \mathrm{B}=\varphi$, ie., A and B are disjoint sets.
\square A and B are called mutually exclusive events.

A and B are disjoint sets

Exhaustive Events: If $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{n}}$ are n events of a sample space S and if

$$
\mathrm{E}_{1} \mathrm{UE}_{2} \mathrm{U} \ldots \ldots . . \mathrm{UE}_{\mathrm{n}}=\mathrm{S}
$$

Then $E_{1}, E_{2}, \ldots, E_{n}$ are called exhaustive events.
\square For egg. if $S=\{1,2,3,4,5,6\}$
\square Let A: 'a number less than 4 appears'
B: 'a number greater than 2 but less than 5 appears'
C: 'a number greater than 4 appears'

- $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{5,6\}$
- $A \cup B \cup C=\{1,2,3\} \cup\{3,4\} \cup\{5,6\}=S$.
\square Such events A, B and C are called exhaustive events.

NOTE:

\square Clearly if $\mathrm{E}_{\mathrm{i}} \cap \mathrm{E}_{\mathrm{j}}=\varphi$, i.e., E_{i} and E_{j} are panmise disjoint and $\mathrm{E}_{1} \mathrm{U} \mathrm{E}_{2}$ U $\mathrm{UE} \mathrm{E}_{\mathrm{n}}=\mathrm{S}$
\square Then the events $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{n}}$ are called mutually exclusive and exhaustive events.

Mutually
Exclusive

Collectively Exhaustive

Both Mutually Exclusive and Collectively Exhaustive

$$
\begin{aligned}
S & =\{1,2,3,4,5,6\} \\
E & =\{4\} \\
F & =\{2,4,6\} \\
E \cap F & =\{4\} \cap\{2,4,6\} \\
& =\{4\}
\end{aligned}
$$

$E \cap F \neq \phi$
Hence E and F are not mutually exclusive events

Ex 16.2, 5

Three coins are tossed. Describe

(i) Two events which are mutually exclusive.

$$
\begin{array}{ll}
S=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\} \\
\mathrm{A}=\{\mathrm{HHH}\} & B=\{\mathrm{TTT}\} \\
\mathrm{A} \cap \mathrm{~B}=\phi & \text { Hence } \mathrm{A} \text { \& } \mathrm{B} \text { are mutually exclusive }
\end{array}
$$

(ii)Three events which are mutually exclusive and exhaustive
$A=\{H T T, T H T, T T H\}$
exactly two tail comes
$B=\{H H T, H T H, T H H, H H H\}$ at least two head
$C=\{T T T\} \rightarrow$ only tail
$\mathbf{A} \cap \mathbf{B}=\mathbf{B} \cap \mathbf{C}=\mathbf{A} \cap \mathbf{C}=\phi$

$$
A \cup B \cup C=S
$$

Since $A \& B, A \& C, B \& C$ are mutually exclusive

Hence A, B \& C are exhaustive events

Hence A, B and C are mutually exclusive
(iii) Two events, whichrare not mutually exclusive.
$A=\{H H T, H T H, T H H, H H H\} \Rightarrow$ at least two head

$$
B=\{H H H\} \quad \Rightarrow \text { only head }
$$

$A \cap B=\{H H H\}$

$$
\neq \phi \quad A \& B \text { are not mutually exclusive }
$$

(iv) Two events which are mutually exclusive but not exhaustive.

$$
A=\{H H H\} \quad B=\{T T T\} \quad A \cap B=\{H H H\} \cap\{T T T\}=\phi
$$

$A \& B$ are mutually exclusive
$A \cup B=\{H H H\} \cup\{T T T\} \neq S$

$A \& B$ are not exhaustive events

(v) Three events which are mutually exclusive but not exhaustive.

Home work Ex 16.2 Q no. 687

nc

