CLASS:X	INDIAN SCHOOL MUSCAT FIRST PERIODIC ASSESSMENT Marking Scheme	MATHEMATICS
	SET - A	
Q. NO.	VALUE POINTS	SPLIT UP OF MARKS
1 (i) (ii)	$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ Intersecting lines $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$ Parallel lines	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$
2.	$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$ Finding, $K= \pm 6$ Finding, $K=0$ or 6 For k=6, equation has infinitely many solutions	Each step carries $\frac{1}{2}$ mark
	Solving the first variable Solving the second variable Solution, $x=1$ and $y=2$	$\begin{aligned} & \mathbf{1} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$
4.		Each step carries $\frac{1}{2}$ mark
5.	$\text { Put } \frac{1}{x}=u ; \frac{1}{y}=v$ Reducing the given equations into linear equation Solving equations in terms of u and v Finding x and y	$\begin{gathered} \frac{1}{2}+\frac{1}{2} \\ \mathbf{2} \\ \mathbf{1} \end{gathered}$

6.	Let the present age of father and son be x years and y years respectively solving for x and y Father's age $=\mathbf{4 0}$ years Son's age=10 years	$\begin{aligned} & \mathbf{1} \\ & \mathbf{1} \\ & \mathbf{1} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$
7.	$1^{\text {st }}$ line $2^{\text {nd }}$ line Solution Area	Each step carries 1 mark
	SET B	
	Ans. 5 Let the ten's and the unit's digit in the first number be \mathbf{x} and y respectively By solving (i) and (ii) $x=4$ and $y=2$ By solving (i) and (iii) $x=2$ and $y=4$ The numbers are 42 and 24 .	$\begin{gathered} \mathbf{1} \\ \frac{1}{2}+\frac{1}{2} \\ \frac{1}{2}+\frac{1}{2} \\ \mathbf{1} \end{gathered}$
	SET C	
	Ans. 7 Let the speed of the cars at places A and B be $x \mathrm{~km} / \mathrm{hr}$ and y $\mathbf{k m} / \mathrm{hr}$ respectively $\begin{array}{\|l\|} \mathrm{x}-\mathrm{y}=10-\ldots \tag{i}\\ \mathrm{x}+\mathrm{y}=100 \end{array}$ Soling (i) and (ii) $x=55$ and $y=45$ The speed of the car at place $A=55 \mathrm{~km} / \mathrm{hr}$ The speed of the car at place $B=45 \mathrm{~km} / \mathrm{hr}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{1} \\ & \mathbf{1} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$

