4

INDIAN SCHOOL MUSCAT SECOND PERIODIC ASSESSMENT

MATHEMATICS

CLASS: X

Sub. Code: 041

Time Allotted: 50 mins

12**.05.2019** M

Max. Marks: 20

GENERAL INSTRUCTIONS:

- a) All questions are compulsory.
- b) Questions 1 to 4 carry TWO marks each.
- c) Questions 5 to 7 carry FOUR marks each.

Section A

- 1. S and T are point on sides PR and QR of $\triangle PQR$ such that $\angle P = \angle RTS$. Show that 2 $\Delta RPQ \sim \Delta RTS$ 2. M and N are points on the sides PQ and PR respectively of a $\triangle PQR$. If PN = 4.8cm, 2 NR = 1.6cm and MQ= 1.5cm, then find whether MN parallel to QR or not. Find the zeroes of the quadratic polynomial $6x^2 - 3 - 7x$ and verify the relationship between 3. 2 the zeroes and the coefficients. 4. Find the quadratic polynomial, whose zeroes are $\sqrt{2} + 3$ and $\sqrt{2} - 3$. 2 **Section B** 5. Prove that, if a line is drawn parallel to one side of a triangle to intersect the other two sides in 4
- 5. Prove that, if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
- 6. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial: $x^2 + 3x + 1$, $3x^4 + 5x^3 7x^2 + 2x + 2$
- 7. On dividing $x^3 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x 2 and -2x + 4, respectively. Find g(x).

End of the Question Paper

Roll Number	

В

INDIAN SCHOOL MUSCAT FIRST PERIODIC ASSESSMENT

MATHEMATICS

CLASS: X

Sub. Code: 041

Time Allotted: 50 mins

12.05.2019

Max. Marks: 20

GENERAL INSTRUCTIONS:

- a) All questions are compulsory.
- b) Questions 1 to 4 carry TWO marks each.
- c) Questions 5 to 7 carry FOUR marks each.

Section A

- 1. Find the zeroes of the quadratic polynomial $6x^2 3 7x$ and verify the relationship between 2 the zeroes and the coefficients.
- 2. M and N are points on the sides PQ and PR respectively of a $\triangle PQR$. If PN = 4.8cm, NR = 1.6cm 2 and MQ= 1.5cm, then find whether MN parallel to QR or not.
- 3. Find the quadratic polynomial, whose zeroes are $\sqrt{2} + 3$ and $\sqrt{2} 3$.
- 4. S and T are point on sides PR and QR of \triangle PQR such that \angle P = \angle RTS. Show that \triangle RPQ $\sim \triangle$ RTS

Section B

- 5. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial: $x^3 3x + 1$, $x^5 4x^3 + x^2 + 3x + 1$
- 6. On dividing $x^3 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x 2 and 4 2x + 4, respectively. Find g(x).
- 7. Prove that, if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio

End of the Question Paper

Roll Number	

2

INDIAN SCHOOL MUSCAT FIRST PERIODIC ASSESSMENT

MATHEMATICS

CLASS: X

Sub. Code: 041

Time Allotted: 50 mins

12.05.2019

Max. Marks: 20

GENERAL INSTRUCTIONS:

- a) All questions are compulsory.
- b) Questions 1 to 4 carry TWO marks each.
- c) Questions 5 to 7 carry FOUR marks each.

Section A

- 1. M and N are points on the sides PQ and PR respectively of a ΔPQR . If PN = 4.8cm, NR = 1.6cm 2 and MQ= 1.5cm, then find whether MN parallel to QR or not.
- 2. Find the zeroes of the quadratic polynomial $6x^2 3 7x$ and verify the relationship between 2 the zeroes and the coefficients.
- 3. S and T are point on sides PR and QR of $\triangle PQR$ such that $\angle P = \angle RTS$. Show that $\triangle RPQ \sim \triangle RTS$
- 4. Find the quadratic polynomial, whose zeroes are $\sqrt{2} + 3$ and $\sqrt{2} 3$.

Section B

- 5. On dividing $x^3 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x 2 and -2x + 4, respectively. Find g(x).
- 6. Prove that, if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
- 7. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial : $1 + 2x + x^2$, $3x^3 + x^2 + 2x + 5$

End of the Question Paper