

# INDIAN SCHOOL MUSCAT FIRST PRE-BOARD EXAMINATION **MATHEMATICS**

CLASS: X

7.

(A) cos B

Sub. Code: 041

Time Allotted: 3 Hrs.

05.01.2020

Max. Marks: 80

| <b>C</b> | 1    | Υ  | _4   | -40- |     |
|----------|------|----|------|------|-----|
| Gen      | erat | ın | stru | ctio | ns: |

All the questions are compulsory.

The question paper consists of 40 questions divided into 4 sections A, B, C, and D.

- Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
- There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- Use of calculator is not permitted.

# **SECTION -A**

Q 1- Q 10 are multiple choice questions. Select the most appropriate answer from the given The decimal expansion of the rational number  $\frac{51}{600}$  will terminate after \_\_\_\_\_decimal place(s) 1 (C) three (D) four (B) two (A) one If the product of the zeroes of the polynomial  $ax^2 - 6x - 6$  is 4, then the value of a is: A)  $\frac{-3}{2}$  (B) -24 (C)  $\frac{1}{2}$  (D)  $\frac{3}{2}$ 2. A)  $\frac{-3}{2}$ The pair of linear equations 3x - 2y = 6 and 2y - 3x + 12 = 0 is 3. (B) inconsistent (C) consistent and dependent (D) None of these (A) consistent Of the following quadratic equations, which is the one whose roots are 2 and -15? 4. (A)  $x^2-2x+15=0$  (B)  $x^2+15x-2=0$  (C)  $x^2+13x-30=0$ (D)  $x^2 - 30 = 0$ The distance of the point P (-6, 8) from the origin is 5. (C) 10(D) 6(A) 8 (B) 2 What is the value of  $\sec(90 - \theta)$ °.  $\sin \theta \sec 45$ °? 6. (B)  $\frac{\sqrt{3}}{2}$ (C)  $\sqrt{2}$  $(D)\sqrt{3}$ (A) 1

If A +B = 90°, then the simplest form of  $\sqrt{\sin A \sec B - \sin A \cos B}$  is \_\_\_\_\_(A) cos B (B) cos A (C) sin A (D) sec A

(B) cos A

(C) sin A

| 8.  | A solid sphere of radius r is melted and recast into the shape of a solid cone of height 4r. The radius of the base of the cone is                                                       |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (A) r (B) 2r (C) 3r (D) 4r                                                                                                                                                               |
| 9.  | A card is drawn from a well-shuffled deck of 52 playing cards. The probability that it is not a face card (A) $\frac{12}{52}$ (B) $\frac{16}{52}$ (C) $\frac{10}{13}$ (D) $\frac{9}{13}$ |
| 10. | If prime factorization of 2472 is expressed as $2^p \times 3 \times q$ , then the value of p and q: (A) 103, 3 (B) 3, 107 (C) 3, 103 (D) 3, 101                                          |
|     | (Q.11-Q.15) Fill in the blanks.                                                                                                                                                          |
| 11. | The common difference of an A.P $\frac{1}{2r}$ , $\frac{1-3r}{2r}$ , $\frac{1-6r}{2r}$ , is                                                                                              |
| 12. | The value of $4 \cot^2 45^\circ - \sec^2 60^\circ + \sin^2 60^\circ + \cos^2 90^\circ$ is                                                                                                |
| 13. | In fig.1, O is the centre of a circle, PQ is a chord and PT is the tangent at P. If $\angle POQ = 70^{\circ}$ , then $\angle TPQ = $                                                     |
|     | OR In fig.2, AOB is a diameter of a circle with centre O and AP is a tangent to the circle at A. If $\angle POB=115^{\circ}$ , then $\angle APO=$                                        |
| 14. | The x-coordinate of the point of intersection of less than type and more than type ogives of the grouped data is                                                                         |
| 15. | The type of triangle formed by the points $(-4, 0)$ , $(4, 0)$ , $(0, 3)$ is                                                                                                             |
|     | (Q.16-Q.20) Answer the following                                                                                                                                                         |
| 16. | Examine the nature of the roots of the equation $2x^2 - 7x + 3 = 0$ .<br><b>OR</b>                                                                                                       |
|     | If one zero of the polynomial $3 x^2 - 8x + 2p + 1$ is reciprocal of the other, find the value of p.                                                                                     |
| 17. | Can two numbers have 4 as their HCF and 250 as their LCM? Give reason.                                                                                                                   |
| 18. | Are the points $(0, 1)$ , $(2, 3)$ and $(3, 4)$ collinear? Justify your answer.                                                                                                          |
| 19. | If $\triangle ABC \sim \triangle DEF$ such that $2AB = DE$ and $BC = 8$ cm, then find EF.                                                                                                |
| 20. | In fig. 3, D and E are points on AB and AC respectively, such that DE $\parallel$ BC If AD = $\frac{1}{2}$ BD, AE=4.5cm, find AC.                                                        |

Page **2** of **4** 

# SECTION - B

- In fig.4, A circle touches sides AB and AC produced and side BC of  $\triangle$ ABC at Q, R and P respectively. Show that AQ =  $\frac{1}{2}$  perimeter of  $\triangle$ ABC
- 22 Check whether (-150) is a term of the A.P. 11, 8, 5, 2,.....
- 23.  $\triangle PQR$  is right angled at P and M is a point on QR such that PM  $\triangle QR$ . Show that PM<sup>2</sup> = QM. MR

  OR

  In an equilateral triangle ABC, D is a point on side BC such that BD =  $\frac{1}{3}$  BC.

  Prove that  $9(AD)^2 = 7(AB)^2$ .
- 24. Find the length of kite string flying at 100m above the ground with the elevation of 45° (Use  $\sqrt{2}$  = 1.41)
- 25. A copper rod of diameter 1cm and length 8 cm is drawn into a wire of length 18 m of uniform thickness. Find the thickness of the wire.
- 26. A box contains cards bearing numbers from 6 to 70. If one card is drawn at random from the box, find the probability that it bears
  - (i) a one digit number and (ii) a composite number between 50 and 70.

OR

Two dice are thrown simultaneously. Find the probability that

- (i) the sum of numbers appearing on the two dice is 5
- (ii) getting an odd number on the first die and a multiple of 3 on the other.

# **SECTION - C**

27. Use Euclid's division algorithm to find the HCF of 726 and 275.

OR

Show that square of any positive integer is of the form 3q or 3q +1 for some integer q.

- 28. Find the centre of a circle passing through the points (6, -6), (3, -7) and (3, 3).
- 29. If the polynomial  $6x^4 + 8x^3 + 17x^2 + 21x + 7$  is divided by another polynomial  $3x^2 + 4x + 1$ , the remainder comes out to be (ax + b), find the value of a and b.
- 30. Solve for x and y:  $\frac{6}{x-1} \frac{3}{y-2} = 1$  and :  $\frac{5}{x-1} + \frac{1}{y-2} = 2$ , where x  $\neq$  1 and y  $\neq$  2

2 men and 7 women can do a piece of work in 4 days. It is done by 4 men and 4 women in 3 days. How long would it take for one man or one woman to do it?

- 31. In an A.P., if a = 12,  $a_n = 248$  and  $S_n = 7800$ , then find n and d.
- 32. Prove that  $(\csc A \sin A)(\sec A \cos A) = \frac{1}{\tan A + \cot A}$  OR

If  $\sec \theta + \tan \theta = p$ , then find the value of  $\csc \theta$ 

33. Find the area of the shaded region in fig.5, where ABCD is a square of side 10 cm and semicircles are drawn with each side of the square as diameter. (Use  $\pi = 3.14$ )



34. The given distribution shows the number of runs scored by the batsmen in inter-school cricket matches:

| Runs scored    | 0 - 50 | 50 – 100 | 100 - 150 | 150 - 200 | 200 - 250 |
|----------------|--------|----------|-----------|-----------|-----------|
| No. of batsmen | 4      | 6        | 8         | 7         | 5         |

Draw a more than type ogive for the above data using a suitable scale.

# SECTION - D

35. If the mean of the following data is 14.7, find the values of p and q. Also find its mode.

| Class     | 0-6 | 6 - 12 | 12 - 18 | 18 - 24 | 24 - 30 | 30 - 36 | 36 – 42 | Total |
|-----------|-----|--------|---------|---------|---------|---------|---------|-------|
| Frequency | 10  | р      | 4       | 7       | q       | 4       | 1       | 40    |

The total cost of a certain length of a piece of cloth is Rs. 200. If the piece was 5 m longer and each metre of cloth costs Rs. 2 less, the cost of the piece would have remained unchanged. How long is the piece and what is its original rate per metre?

#### OR

Rs. 9000 were divided equally among a certain number of persons. Had there been 20 more persons, each would have got Rs. 160 less. Find the original number of persons.

- Prove that "If a line drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio".
- Construct a  $\triangle ABC$  with BC = 7 cm,  $\angle B = 60^{\circ}$  and AB = 6 cm. Construct another triangle whose sides are  $\frac{3}{4}$  times of the corresponding sides of  $\triangle ABC$

#### OR

Construct a pair of tangents to a circle of radius 3cm from a point on the concentric circle of radius 5 cm. Measure the length of each tangent.

- From a point P on the ground, the angles of elevation of the top of a 10 m tall building and a helicopter, hovering at some height vertically over the top of the building are 30° and 60° respectively. Find the height of the helicopter above the ground and also find distance between the foot of the building and the point.
- A toy is in the form of a hemisphere surmounted by a right circular cone of the same base radius as that of the hemisphere. If the radius of base of the cone is 21 cm and its volume is  $\frac{2}{3}$  of the volume of the hemisphere, calculate the height of the cone and the surface area of the toy.  $\left(Use \pi = \frac{22}{7}\right)$

### OR

A milk container is made of metal sheet in the shape of frustum of a cone whose volume is  $10459\frac{3}{7}$  cm<sup>3</sup>. The radii of its lower and upper circular ends are 8 cm and 20 cm respectively. Find the cost of metal sheet used in making the container at the rate of Rs 1.40 per square centimeter. (Use  $\pi = \frac{22}{7}$ )

# **End of the Question Paper**

| Il Number  | ll Number | ll Number |
|------------|-----------|-----------|
| ill Number | ll Number | ll Number |
| II Niimber | ii Number | ii Number |
|            |           |           |



# INDIAN SCHOOL MUSCAT FIRST PRE-BOARD EXAMINATION **MATHEMATICS**

CLASS: X

Sub. Code: 041

Time Allotted: 3 Hrs.

В

05.01.2020

Max. Marks: 80

SET

## **General Instructions:**

All the questions are compulsory

- The question paper consists of 40 questions divided into 4 sections A, B, C, and D.
- Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
- There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.

Q 1- Q 10 are multiple choice questions. Select the most appropriate answer from the given

Use of calculator is not permitted.

# SECTION - A

| 1  | The decimal expansion of the rational number $\frac{54}{600}$ will terminate afterdecimal place(s |                                           |                                                |                                   |                   |  |  |  |
|----|---------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------|-------------------|--|--|--|
|    | (A) one                                                                                           | (B) three                                 | (C) two                                        |                                   | four              |  |  |  |
| 2. | If the product of A) $\frac{-3}{2}$                                                               | f the zeroes of the poly<br>(B) -24       | Prnomial $ax^2 - 6x - 6$ is $(C) \frac{1}{2}$  | s 4, then the v (D) $\frac{3}{2}$ | alue of a is:     |  |  |  |
| 3. | The pair of line (A) consistent                                                                   | ar equations $3x - 2y =$ (B) inconsistent | 6 and $2y - 3x + 12 =$<br>(C) consistent and c |                                   | (D) None of these |  |  |  |

- What is the value of  $\sec(90 \theta)$  °.  $\sin \theta \csc 45$  °? (A) 1 (B)  $\frac{\sqrt{3}}{2}$  (C)  $\sqrt{2}$  (D) $\sqrt{3}$ 4.
- (B)  $\frac{\sqrt{3}}{3}$

- A card is drawn from a well-shuffled deck of 52 playing cards. The probability that it is not a face card (A)  $\frac{12}{52}$  (B)  $\frac{16}{52}$  (C)  $\frac{10}{13}$  (D)  $\frac{9}{13}$ 5.
- Of the following quadratic equations, which is the one whose roots are 2 and -15? (A)  $x^2-2x+15=0$  (B)  $x^2+15x-2=0$  (C)  $x^2+13x-30=0$  (D)  $x^2-30=0$ 6.
- If A +B = 90°, then the simplest form of  $\sqrt{\sin A \sec B \sin A \cos B}$  is \_\_\_\_ 7.
  - (A) cos B
- (B) cos A
- (C) sin A
- (D) sec A

| 8.  | A solid sphere of radius r is melted and recast into the sha<br>the base of the cone is                                                                                                                                                                                                      |                                        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|     | (A) r (B) 2r (C) 3r                                                                                                                                                                                                                                                                          | (D) 4r                                 |
| 9.  | The distance of the point P (-6, 8) from the origin is (A) 8 (B) 2 (C) 10                                                                                                                                                                                                                    | (D) 6                                  |
| 10. | If prime factorization of 2472 is expressed as $2^p \times 3 \times q$ . (A) 103, 3 (B) 3, 107 (C) 3, 103                                                                                                                                                                                    | then the value of p and q: (D) 3, 101  |
|     | (Q.11-Q.15) Fill in the blanks.                                                                                                                                                                                                                                                              |                                        |
| 11. | The common difference of an A.P $\frac{1}{2r}$ , $\frac{1-3r}{2r}$ , $\frac{1-6r}{2r}$ , is                                                                                                                                                                                                  |                                        |
| 12. | The type of triangle formed by the points (-4, 0), (4, 0), (6                                                                                                                                                                                                                                | 0, 3) is                               |
| 13. | In fig.1, O is the centre of a circle, PQ is a chord and PT is the tangent at P. If $\angle POQ = 50^{\circ}$ , then $\angle TPQ = $ OR  In fig.2, AOB is a diameter of a circle with centre O and AP is a tangent to the circle at A.  If $\angle POB = 115^{\circ}$ , then $\angle APO = $ | Fig.2  A  O  D  Fig.2  B               |
| 14. | The x-coordinate of the point of intersection of less than grouped data is                                                                                                                                                                                                                   | type and more than type ogives of the  |
| 15. | The value of $4 \cot^2 45^\circ - \sec^2 60^\circ + \sin^2 60^\circ + \cos^2 90^\circ$ i                                                                                                                                                                                                     | S                                      |
|     | (Q.16-Q.20) Answer the following:                                                                                                                                                                                                                                                            |                                        |
| 16. | Examine the nature of the roots of the equation $2x^2 - 7x$ <b>OR</b>                                                                                                                                                                                                                        | +3=0.                                  |
|     | If one zero of the polynomial 3 $x^2$ - 8x +2p+1 is reciproc                                                                                                                                                                                                                                 | cal of the other, find the value of p. |
| 17. | Are the points (0, 1), (2, 3) and (3, 4) collinear? Justify y                                                                                                                                                                                                                                | our answer.                            |
| 18. | If $\triangle ABC \sim \triangle DEF$ such that $2AB = DE$ and $BC = 8$ cm,                                                                                                                                                                                                                  | then find EF.                          |
| 19. | Can two numbers have 4 as their HCF and 250 as their I                                                                                                                                                                                                                                       | CM? Give reason.                       |
| 20. | In fig.3, D and E are points on AB and AC respectively, such that DE   BC If AD = $\frac{1}{3}$ BD, AE=4.5cm, find AC.                                                                                                                                                                       | E P C R                                |

In fig.4, A circle touches sides AB and AC produced and side BC of  $\triangle$ ABC at Q, R and P respectively. Show that AQ =  $\frac{1}{2}$  perimeter of  $\triangle$ ABC

SECTION - B

- 22 Check whether 301 is a term of the A.P. 5, 11, 17, 23, . . . .
- 23.  $\triangle PQR$  is right angled at P and M is a point on QR such that PM  $\perp QR$ . Show that PM<sup>2</sup> = QM. MR **OR**

In an equilateral triangle ABC, D is a point on side BC such that BD =  $\frac{1}{3}$  BC. Prove that  $9(AD)^2 = 7(AB)^2$ .

- 24. A copper rod of diameter 1cm and length 8 cm is drawn into a wire of length 18 m of uniform thickness. Find the thickness of the wire.
- 25. Find the length of kite string flying at 100m above the ground with the elevation of  $45^{\circ}$  (Use  $\sqrt{2} = 1.41$ )
- 26. A box contains cards bearing numbers from 6 to 70. If one card is drawn at random from the box, find the probability that it bears
  - (i) a two digit number and (ii) a prime number between 50 and 70.

## OF

Two dice are thrown simultaneously. Find the probability that

- (i) the sum of numbers appearing on the two dice is 6
- (ii) getting an odd number on the first die and a multiple of 3 on the other.

# **SECTION - C**

27. Prove that  $(\csc A - \sin A)(\sec A - \cos A) = \frac{1}{\tan A + \cot A}$ 

If  $\sec \theta + \tan \theta = p$ , then find the value of  $\csc \theta$ 

- 28. Find the centre of a circle passing through the points (6, -6), (3, -7) and (3, 3).
- 29. Find all zeroes of the polynomial  $3x^3 + 10x^2 9x 4$  if one of its zero is 1.
- 30. Solve for x and y:  $\frac{6}{x-1} \frac{3}{y-2} = 1$  and :  $\frac{5}{x-1} + \frac{1}{y-2} = 2$ , where x \neq 1 and y \neq 2

2 men and 7 women can do a piece of work in 4 days. It is done by 4 men and 4 women in 3 days. How long would it take for one man or one woman to do it?

31. The given distribution shows the number of runs scored by the batsmen in inter-school cricket matches:

| The given distribute | 1011 0110 112 1111 |          |           | <del>,</del> | T         |
|----------------------|--------------------|----------|-----------|--------------|-----------|
| Runs scored          | 0 - 50             | 50 - 100 | 100 - 150 | 150 - 200    | 200 - 250 |
| No. of batsmen       | 4                  | 6        | 8         | 7            | 5         |

Draw a more than type ogive for the above data using a suitable scale.

32. Use Euclid's division algorithm to find the HCF of 726 and 275.

#### OR

Show that square of any positive integer is of the form 3q or 3q +1 for some integer q.

33. Find the area of the shaded region in fig.5, where ABCD is a square of side 10 cm and semicircles are drawn with each side of the square as diameter. (Use  $\pi = 3.14$ )



34. In an A.P., if a = 12,  $a_n = 248$  and  $S_n = 7800$ , then find n and d.

# SECTION - D

35. If the mean of the following data is 14.7, find the values of p and q. Also find its mode.

| II tile illetti or | **** |        |         |         |         |         |         |       |
|--------------------|------|--------|---------|---------|---------|---------|---------|-------|
| Class              | 0-6  | 6 - 12 | 12 - 18 | 18 - 24 | 24 - 30 | 30 - 36 | 36 - 42 | Total |
| Frequency          | 10   | р      | 4       | 7       | q       | 4       | 1       | 40    |

The total cost of a certain length of a piece of cloth is Rs. 200. If the piece was 5 m longer and each metre of cloth costs Rs. 2 less, the cost of the piece would have remained unchanged. How long is the piece and what is its original rate per metre?

## OR

Rs. 9000 were divided equally among a certain number of persons. Had there been 20 more persons, each would have got Rs. 160 less. Find the original number of persons.

- Prove that "In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle".
- From a point P on the ground, the angles of elevation of the top of a 10 m tall building and a helicopter, hovering at some height vertically over the top of the building are 30° and 60° respectively. Find the height of the helicopter above the ground and also find distance between the foot of the building and the point.
- Construct a  $\triangle ABC$  with BC = 7 cm,  $\angle B = 60^{\circ}$  and AB = 6 cm. Construct another triangle whose sides are  $\frac{3}{4}$  times of the corresponding sides of  $\triangle ABC$

#### OR

Construct a pair of tangents to a circle of radius 3cm from a point on the concentric circle of radius 5 cm. Measure the length of each tangent.

A toy is in the form of a hemisphere surmounted by a right circular cone of the same base radius as that of the hemisphere. If the radius of base of the cone is 21 cm and its volume is  $\frac{2}{3}$  of the volume of the hemisphere, calculate the height of the cone and the surface area of the toy.  $\left(Use \pi = \frac{22}{7}\right)$ 

#### OR

A milk container is made of metal sheet in the shape of frustum of a cone whose volume is  $10459\frac{3}{7}$  cm<sup>3</sup>. The radii of its lower and upper circular ends are 8 cm and 20 cm respectively. Find the cost of metal sheet used in making the container at the rate of Rs 1.40 per square centimeter.  $\left(Use\ \pi = \frac{22}{7}\right)$ 

# **End of the Question Paper**

| SET ( |  |
|-------|--|
|-------|--|



**Roll Number** 

# INDIAN SCHOOL MUSCAT FIRST PRE-BOARD EXAMINATION MATHEMATICS

CLASS: X

Sub. Code: 041

Time Allotted: 3 Hrs.

05.01.2020

Max. Marks: 80

(D) sec A

# **General Instructions:**

• All the questions are compulsory

• The question paper consists of 40 questions divided into 4 sections A, B, C, and D.

- Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
- There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- Use of calculator is not permitted.

# SECTION - A

|    | <del>~~~~~~~</del>                                                                                                                                            |    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | Q 1- Q 10 are multiple choice questions. Select the most appropriate answer from the gioptions.                                                               |    |
| 1  | The decimal expansion of the rational number $\frac{51}{600}$ will terminate afterdecimal place(s (A) one (B) two (C) three (D) four                          | s) |
| 2. | If the product of the zeroes of the polynomial $ax^2 - 6x - 6$ is 4, then the value of a is:<br>A) $\frac{-3}{2}$ (B) -24 (C) $\frac{1}{2}$ (D) $\frac{3}{2}$ |    |
| 3. | The pair of linear equations $3x - 2y = 6$ and $2y - 3x + 12 = 0$ is (A) consistent (B) inconsistent (C) consistent and dependent (D) None of these           | !  |
| 4. | Of the following quadratic equations, which is the one whose roots are 2 and -15?<br>(A) $x^2-2x+15=0$ (B) $x^2+15x-2=0$ (C) $x^2+13x-30=0$ (D) $x^2-30=0$    |    |
| 5. | The distance of the point P (-6, 8) from the origin is                                                                                                        |    |
|    | (A) 8 (B) 2 (C) 10 (D) 6                                                                                                                                      |    |
| 6. | What is the value of $\sec(90 - \theta)$ °. $\sin \theta \sec 45$ °?                                                                                          |    |
|    | (A) 1 (B) $\frac{\sqrt{3}}{2}$ (C) $\sqrt{2}$ (D) $\sqrt{3}$                                                                                                  |    |
| 7. | If A +B = 90°, then the simplest form of $\sqrt{\sin A \sec B - \sin A \cos B}$ is                                                                            |    |
|    |                                                                                                                                                               |    |

(B) sin B

(A) cos B

sin A

| 8. | A solid sphere of radius r is melted and recast into the shape of a solid cylinder of height 3r. | The radius |
|----|--------------------------------------------------------------------------------------------------|------------|
|    | of the base of the cylinder is                                                                   |            |

 $(A) = \frac{2}{3} r$ 

(B) 2r

(C) 3r

(D) 4r

9. A card is drawn from a well-shuffled deck of 52 playing cards. The probability that it is not a face card

(A)  $\frac{12}{52}$ 

(B)  $\frac{16}{52}$ 

(C)  $\frac{10}{13}$ 

(D)  $\frac{9}{13}$ 

10. If prime factorization of 2472 is expressed as  $2^p \times 3 \times q$ , then the value of p and q:

(A) 103, 3

(B) 3, 107

(C) 3, 103

(D) 3, 101

# (Q.11-Q.15) Fill in the blanks.

11. The type of triangle formed by the points (-4, 0), (4, 0), (0, 3) is \_\_\_\_\_.

12. The x-coordinate of the point of intersection of less than type and more than type ogives of the grouped data is \_\_\_\_\_\_

13. In fig.1, O is the centre of a circle, PQ is a chord and PT is the tangent at P. If ∠POQ= 60°, then ∠TPQ = \_\_\_\_\_OR

If  $\angle POB=115^{\circ}$ , then  $\angle APO=$ 

In fig.2, AOB is a diameter of a circle with

centre O and AP is a tangent to the circle at A.



Fig.2 A 115° B

- 14. The common difference of an A.P $\frac{1}{2r}$ ,  $\frac{1-3r}{2r}$ ,  $\frac{1-6r}{2r}$ , .... is
- 15. The value of  $4 \cot^2 45^\circ \sec^2 60^\circ + \sin^2 60^\circ + \cos^2 90^\circ$  is \_\_\_\_\_

# (Q.16-Q.20) Answer the following

- 16. Examine the nature of the roots of the equation  $2x^2 7x + 3 = 0$ .

  OR

  If one zero of the polynomial  $3x^2 8x + 2p + 1$  is reciprocal of the other, find the value of p.
- 17. Can two numbers have 5 as their HCF and 250 as their LCM? Give reason.
- 18. If  $\triangle ABC \sim \triangle DEF$  such that 2AB = DE and BC = 8 cm, then find EF.
- 19. Are the points (0, 1), (2, 3) and (3, 4) collinear? Justify your answer.
- 20. In fig.3, D and E are points on AB and AC respectively, such that DE | BC If  $AD = \frac{1}{3}BD$ , AE=4.5cm, find AC.



SECTION - B



In fig.4, A circle touches sides AB and AC produced and side BC of  $\triangle$ ABC at Q, R and P respectively. Show that AQ =  $\frac{1}{2}$  perimeter of  $\triangle$ ABC

- A copper rod of diameter 1cm and length 8 cm is drawn into a wire of length 18 m of uniform thickness. Find the thickness of the wire.
- 23.  $\triangle PQR$  is right angled at P and M is a point on QR such that PM  $\triangle QR$ . Show that PM<sup>2</sup> = QM. MR

  OR

  In an equilateral triangle ABC, D is a point on side BC such that BD =  $\frac{1}{3}$ BC.

  Prove that  $9(AD)^2 = 7(AB)^2$ .
- 24. Find the length of kite string flying at 100m above the ground with the elevation of 45° (Use  $\sqrt{2}$  = 1.41)
- 25. Find 10<sup>th</sup> term from the end of the A.P. 11, 8, 5, 2, ..., 61.
- 26. A box contains cards bearing numbers from 6 to 70. If one card is drawn at random from the box, find the probability that it bears
  - (i) a one digit number and (ii) a prime number between 40 and 60.

OR

Two dice are thrown simultaneously. Find the probability that

- (i) the sum of numbers appearing on the two dice is 5
- (ii) getting an odd number on the first die and a multiple of 3 on the other.

## **SECTION - C**

27. Use Euclid's division algorithm to find the HCF of 726 and 275.

OR

Show that square of any positive integer is of the form 3q or 3q +1 for some integer q.

- 28. Find the centre of a circle passing through the points (6, -6), (3, -7) and (3, 3).
- 29. Find the zeroes of the polynomial  $x^2$  4x + 1 and verify the relationship between the zeroes and the coefficients.
- 30. Solve for x and y:  $\frac{6}{x-1} \frac{3}{y-2} = 1$  and  $: \frac{5}{x-1} + \frac{1}{y-2} = 2$ , where  $x \ne 1$  and  $y \ne 2$

2 men and 7 women can do a piece of work in 4 days. It is done by 4 men and 4 women in 3 days. How long would it take for one man or one woman to do it?

- 31. In an A.P., if a = 12,  $a_n = 248$  and  $S_n = 7800$ , then find n and d.
- 32. Prove that  $(\csc A \sin A)(\sec A \cos A) = \frac{1}{\tan A + \cot A}$

If  $\sec \theta + \tan \theta = p$ , then find the value of  $\csc \theta$ 

33. Find the area of the shaded region in fig.5, where ABCD is a square of side 10 cm and semicircles are drawn with each side of the square as diameter. (Use  $\pi = 3.14$ )



34. The given distribution shows the number of runs scored by the batsmen in inter-school cricket matches:

| Runs scored    | 0 - 50 | 50 – 100 | 100 - 150 | 150 - 200 | 200 - 250 |
|----------------|--------|----------|-----------|-----------|-----------|
| No. of batsmen | 4      | 6        | 8         | 7         | 5         |

Draw a more than type ogive for the above data using a suitable scale.

## SECTION - D

35. If the mean of the following data is 14.7, find the values of p and q. Also find its mode.

| If the mount of the following data is a majority in the first of the following data is a majority in the first of the following data is a majority in the first of the following data is a majority in the first of the following data is a majority in the first of the following data is a majority in the first of the fir |       |        |         |         |         |         |         |       |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|---------|---------|---------|---------|---------|-------|--|--|--|
| Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 - 6 | 6 – 12 | 12 - 18 | 18 - 24 | 24 - 30 | 30 - 36 | 36 - 42 | Total |  |  |  |
| Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10    | р      | 4       | 7       | q       | 4       | 1       | 40    |  |  |  |

Construct a  $\triangle ABC$  with BC = 7 cm,  $\angle B = 60^{\circ}$  and AB = 6 cm. Construct another triangle whose sides are  $\frac{3}{4}$  times of the corresponding sides of  $\triangle ABC$ 

#### OR

Construct a pair of tangents to a circle of radius 3cm from a point on the concentric circle of radius 5 cm. Measure the length of each tangent.

- Prove that "If a line drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio".
- 38 The total cost of a certain length of a piece of cloth is Rs. 200. If the piece was 5 m longer and each metre of cloth costs Rs. 2 less, the cost of the piece would have remained unchanged. How long is the piece and what is its original rate per metre?

#### OF

Rs. 9000 were divided equally among a certain number of persons. Had there been 20 more persons, each would have got Rs. 160 less. Find the original number of persons.

- The angle of elevation of the top B of a tower AB from a point X on the ground is 60°. At a point Y, 40 m vertically above X, the angle of elevation of the top is 45°. Find the height of the tower AB and distance XB.
- A toy is in the form of a hemisphere surmounted by a right circular cone of the same base radius as that of the hemisphere. If the radius of base of the cone is 21 cm and its volume is  $\frac{2}{3}$  of the volume of the hemisphere, calculate the height of the cone and the surface area of the toy.  $\left(Use\ \pi = \frac{22}{7}\right)$

## OR

A milk container is made of metal sheet in the shape of frustum of a cone whose volume is  $10459\frac{3}{7}$  cm<sup>3</sup>. The radii of its lower and upper circular ends are 8 cm and 20 cm respectively. Find the cost of metal sheet used in making the container at the rate of Rs 1.40 per square centimeter.  $\left(Use\ \pi=\frac{22}{7}\right)$ 

# **End of the Question Paper**