D - 11 NI la au	
Roll Number	
	1

SET B

INDIAN SCHOOL MUSCAT FINAL EXAMINATION MATHEMATICS

CI	LASS:	χ
\sim		,,

1.

4.

Sub. Code: 041

Time Allotted: 3 Hrs.

25.11.2019

Max. Marks: 80

General Instructions:

(i) All questions are compulsory.

- (ii) Questions in section A are MCQ,F.I.B. and very short answer type questions carrying 1 mark each.
- (iii) Questions in section B are short answer type questions carrying 2 marks each.

The area of a square inscribed in a circle of radius 8cm is:

- (iv) Questions in section C are long answer -I type questions carrying 4 marks each.
- (v) Questions in section D are long answer -II type questions carrying 6 marks each.
- (vi) There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions (vii) Use of calculators is not permitted.

SECTION A: (Questions 1 - 20 carry 1 mark each)

I.	Q1 - Q10 ARE MULTIPLE CHOICE QUESTIONS. WRITE THE ANSWER ALC	
	WITH THE CORRECT OPTION:	$(1 \times 10 = 10 \text{ marks})$

	$(a)64cm^2$	$(b)100cm^2$	(c) $125cm^2$	(d) 128cm ²	
2.	If $\csc \theta = \frac{3}{2}$ then $2(\csc^2 \theta + \cot^2 \theta)$ is:				
	(a) 3	(b) 7	(c) 9	(d) 5	
2	Erralid's division	lamma states that for an	w two positive integers a and	h there exist	

Euclid's division lemma states that for any two positive integers a and b, there exist 3. unique integers q and r such that a = bq + r, where r must satisfy:

(b) $0 < r \le b$ (c) $0 \le r < b$ (d) 0 < r < b(a) 1 < r < b

The common point of the tangent to a circle and the circle, is called: (c) the origin (d) the end point of tangent (a) the point of contact (b) the centre

In tossing a die, the probability of getting an odd number less than 4 is: 5.

 $(d) \frac{3}{4}$ $(c) \frac{1}{3}$ $(b)^{\frac{1}{2}}$ (a) 1

The point on the X-axis which is equidistant from points (-1, 0) and (5, 0) is 6. (c)(3,0)(d)(0,3)(b)(2,0)(a)(0,2)

The area of a square inscribed in a circle of radius 8cm is: 7.

	$(a)64cm^2$	$(b)100cm^2$	(c) 125cn	$n^2 \qquad (a) 128cm^2$
3.	If $\frac{1}{2}$ is a root of	the equation $x^2 + kx - \frac{5}{4} = 0$, then the value of	k is:
	(a) $\frac{1}{2}$	(b) - 2	$(c) \frac{1}{4}$	(d) 2
9.	A shuttle cock u	sed for playing badminton	has the shape of th	ne combination of:
	(a) a cylinder ar	nd a sphere (b) a sphere a	nd a cone (c) a	cylinder and a hemisphere
	(d) a hemispher	e and frustum of a cone .		
10.	If $\triangle ABC \sim \triangle DEF$,	BC = 4cm, EF = 5cm and as	$r(\Delta ABC) = 80cm^2$, then $ar(\Delta DEF)$ is
	(a) $100cm^2$	$(b)125cm^2$	$(c)150cm^2$	$(d)200cm^2$
II.	(Q11- Q15) FILI	L IN THE BLANKS:		$(1 \times 5 = 5 \text{ marks})$
11.	If the points A (6, 1), B (8, 2), C (9, 4) and D	(p, 3) are the verti	ces of a parallelogram,
	taken in order,	then the value of p is	·	
12.	The ratio of cor	responding sides of two sim	ilar triangles is 5:	6, then the ratio of their
	areas is	_•		
13.	If $x = 2^3 \times 3 \times$	5^2 and $y = 2^2 \times 3^3$, then H0	CF (<i>x</i> , <i>y</i>) is	 .
14.	The common di	fference of an AP in which	$a_{25} - a_{12} = -52 \text{ is}$	S
15. The distance between two parallel tangents of a circle of radius 3 cm is			us 3 cm is	
			OR	
	Length of a tan	gent drawn to a circle with 1	radius 3 cm from a	point 4 cm from the centre
	of the circle is -	·		
III.	(Q16-Q20) ANS	SWER THE FOLLOWING		$(1 \times 5 = 5 \text{ marks})$
16.	Find the value	of $\sin 60^{0} \cos 30^{0} - \cos 60^{0} \text{ s}$	in 30^0	
17.	Two players, K	hushi and Rimaz play a bad	lminton match. If	the probability of Khushi's
	winning the ma	atch is 0.62, then find the pro	obability of Rimaz	's winning.
18.	What is the pro	oduct of the HCF and LCM	of the smallest pri	me number and the smallest
	composite num	ıber?		
19.	If A (5, 1); B (1,	5) and C (-3, -1) are the vert	ices of Δ ABC. Find	the length of median AD.
			OR	
	Find the coord	inates of the point which div	vides the line segn	nent joining the points (4, -3)
	and (8, 5) in the	e ratio 3:1 internally		
20.	If x=1 is a comn	non root of the equations ax^2 -	+ax + 3 = 0 and x	$x^2 + x + b = 0$, then find the

SECTION B: (Questions 21 - 26 carry 2 marks each)

- 21. An integer is chosen at random between 1 and 100. Find the probability that it is
 - (i) divisible by 8 (ii) not divisible by 8

OR

One card is drawn at random from a well shuffled pack of 52 cards .Find the probability of drawing (i) Neither an ace nor a king. (ii) a non-spade.

22. From an airport, two aeroplanes start at the same time. If speed of first aeroplane due north is 500km/h and that of other due east is 650km/h, then find the distance between two aeroplanes after 2 hours.

OR

Prove that the diagonals of a trapezium intersect each other in the same ratio

- 23. Draw a line segment AB of length 9.8cm and divide it internally in the ratio 3:4 .Measure the two parts.
- 24. Two concentric circles of radii 5 cm and 3 cm are given. Find the length of the chord of the larger circle which touches the smaller circle.
- 25. Which term of the AP: 3, 15, 27, 39 ... is 132 more than its 54th term?
- 26. How many spherical lead balls of radius 2.1 cm can be obtained from a rectangular solid lead with dimensions 88 cm, 42 cm and 21 cm?

SECTION C: (Questions 27 - 34 carry 3 marks each)

27. Prove that $\frac{\sin \theta}{1 + \cos \theta} + \frac{1 + \cos \theta}{\sin \theta} = 2 \csc \theta$ Given $\tan \theta = \frac{4}{3}$, Evaluate $\frac{2 \sin \theta \cos \theta}{\cos^2 \theta - \sin^2 \theta}$.

- 28. A medicine capsule is in the shape of a cylinder with two hemispheres stuck to each of its ends (see Fig). The length of the entire capsule is 14 mm and the diameter of the capsule is 5 mm.

 Find its surface area.
- 29. A chord of a circle of radius 10cm subtends a right angle at the centre. Find the area of the minor segment and the area of the major segment (Use $\pi = 3.14$).

OR

A car has two wipers which do not overlap. Each wiper has a blade of length 25 cm

sweeping through an angle of 115°. Find the total area cleaned at each sweep of the blades.

- 30. Find sum of all natural numbers between 200 and 1502 which are exactly divisible by 8.
- 31. (i) Prove that $\sqrt{3}$ is an irrational number.

OR

- (ii) The traffic lights at three different road crossings change after every 48 seconds, 72 seconds and 108 seconds respectively. If they all change simultaneously at 8:00 hours, then at what time will they again change simultaneously?
- 32. ABCD is a parallelogram with co-ordinates of its vertices as A (-2, -1), B (1, 0), C (4, 3) and D (1, 2). Show that the diagonal AC divides it in to two triangles equal in area. Also find the length of the diagonal AC.
- 33. An observer 1.5 m tall is 28.5 m away from a chimney. The angle of elevation of the top of the chimney from her eyes is 45°. What is the height of the chimney?
- 34. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre.

SECTION D: (Questions 35 - 40 carry 4 marks each)

35. Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are $1\frac{1}{2}$ times the corresponding sides of the isosceles triangle.

OR

Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also verify the measurement by actual calculation.

36. The area of an equilateral triangle ABC is 17320.5 cm². With each vertex of the triangle as centre, a circle is drawn with radius equal to half the length of the side of the triangle (See Fig given). Find the area of the shaded region. (use $\pi = 3.14$ and $\sqrt{3} = 1.73205$)

37. Find two consecutive odd positive integers, sum of whose square is 290.

OR

A motor boat whose speed is 18km/h in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.

38. Prove that in a right triangle, the square of the hypotenuse is equal to the

sum of the squares of the other two sides.

- 39. A metallic right circular cone 20 cm high and whose vertical angle is 60° is cut into two parts at the middle of its height by a plane parallel to its base. If the frustum so obtained be drawn into a wire of diameter $\frac{1}{16}$ cm, find the length of the wire.
- 40. As observed from the top of a 100m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships. ($\sqrt{3} = 1.732$)

OR

The shadow of a tower standing on a level ground is found to be 40 m longer when the sun's altitude is 30° than when it is 60° . Find the height of the tower.

End of the Question Paper