

Roll Number	

SET A

INDIAN SCHOOL MUSCAT FINAL EXAMINATION MATHEMATICS

CLASS: X

Sub. Code: 041

Time Allotted: 3 Hrs.

25.11.2019

Max. Marks: 80

General Instructions:

(i) All questions are compulsory.

- (ii) Questions in section A are MCQ,F.I.B. and very short answer type questions carrying 1 mark each.
- (iii) Questions in section B are short answer type questions carrying 2 marks each.
- (iv) Questions in section C are long answer -I type questions carrying 4 marks each.
- (v) Questions in section D are long answer -II type questions carrying 6 marks each.
- (vi) There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions (vii) Use of calculators is not permitted.

SECTION A: (Questions 1 – 20 carry 1 mark each)

I.	Q1 - Q10 ARE MULTIPLE CHOICE QUESTIONS	. WRITE THE ANSWER ALONG
	WITH THE CORRECT OPTION:	$(1 \times 10 = 10 \text{ marks})$

1.	Euclid's division lemma states that for any two positive integers a and b, there exist unique integers q and r such that $a = bq + r$, where r must satisfy:			
	(a) $1 < r < b$	$(b) \ 0 < r \le b$	$(c) \ 0 \le r < b$	$(d) \ 0 < r < b$

2. If n^{th} term of an AP is (2n + 1), then the sum of its first three terms is :

(a) 10

(b) 15

(c) 20

(d) 25

3. If $\triangle ABC \sim \triangle DEF$, BC = 4cm, EF = 5cm and $ar(\triangle ABC) = 80cm^2$, then $ar(\triangle DEF)$ is

 $(a) \ 100 cm^2$

 $(b)125cm^2$

 $(c)150cm^2$

 $(d)200cm^2$

4. The point on the X-axis which is equidistant from points (-1, 0) and (5, 0) is

(a)(0,2)

(b)(2,0)

(c)(3,0)

(d)(0,3)

5. If $\csc \theta = \frac{3}{2}$ then $2(\csc^2 \theta + \cot^2 \theta)$ is:

(a) 3

(b) 7

(c)9

(d) 5

6. If $\frac{1}{2}$ is a root of the equation $x^2 + kx - \frac{5}{4} = 0$, then the value of k is:

(a) $\frac{1}{2}$

(b) - 2

 $(c)^{\frac{1}{4}}$

(d) 2

7.	7. The area of a square inscribed in a circle of radius 8	cm is:			
	$(a)64cm^2 \qquad \qquad (b)100cm^2$	$(c) 125cm^2$	$(d) \ 128cm^2$		
8.	8. The common point of the tangent to a circle and the	circle, is calle	ed:		
	(a) the point of contact (b) the centre (c) the	origin (d) t	he end point of tangent		
9.	9. A shuttle cock used for playing badminton has the	shape of the c	combination of:		
	a cylinder and a sphere (b) a sphere and a co	one (c) a cy	linder and a hemisphere		
	(d) a hemisphere and frustum of a cone				
10.			4 is:		
	(a) 1 $(b)^{\frac{1}{2}}$ $(c)^{\frac{1}{2}}$	$\frac{1}{3}$	$(d) \frac{3}{4}$		
II.	II. (Q11- Q15) FILL IN THE BLANKS:		$(1 \times 5 = 5 \text{ marks})$		
11.	11. If $x = 2^3 \times 3 \times 5^2$ and $y = 2^2 \times 3^3$, then HCF (x , y)	<i>y</i>) is			
12.	12. The distance between two parallel tangents of a cir	cle of radius 3	3 cm is		
	OR				
	Length of a tangent drawn to a circle with radius 3	cm from a po	oint 4 cm from the centre		
	of the circle is				
13.	13. The ratio of corresponding sides of two similar tria	3. The ratio of corresponding sides of two similar triangles is 5: 6, then the ratio of the			
	areas is				
14.	14. The common difference of an AP in which $a_{25} - a_{15}$	$_{12} = -52$ is			
15.	15. If the points A (6, 1), B (8, 2), C (9, 4) and D (p, 3) as	re the vertices	s of a parallelogram,		
	taken in order, then the value of p is				
III.	III. (Q16-Q20) ANSWER THE FOLLOWING:		$(1 \times 5 = 5 \text{ marks})$		
16.	16. What is the product of the HCF and LCM of the smallest prime number and the sm				
	composite number?	v			
17.		∆ ABC. Find th	e length of median AD.		
	OR				
	Find the coordinates of the point which divides th	e line segmer	nt joining the points (4, -3)		
	and (8, 5) in the ratio 3:1 internally.				
18.	18. If $x=1$ is a common root of the equations $ax^2 + ax$	+3 = 0 and	$x^2 + x + b = 0$, then find		
	the value of ab?				
10	19 Find the value of $\sin 60^{\circ} \cos 30^{\circ} - \cos 60^{\circ} \sin 30^{\circ}$				

20. Two players, Khushi and Rimaz play a badminton match. If the probability of Khushi's winning the match is 0.62, find the probability of Rimaz's winning.

SECTION B: (Questions 21 - 26 carry 2 marks each)

- 21. Two concentric circles of radii 5 cm and 3 cm are given. Find the length of the chord of the larger circle which touches the smaller circle.
- 22. How many spherical lead balls of radius 2.1 cm can be obtained from a rectangular solid lead with dimensions 88 cm, 42 cm and 21 cm?
- 23. Which term of the AP: 3, 15, 27, 39 ... is 132 more than its 54th term?
- 24. Draw a line segment AB of length 9.8cm and divide it internally in the ratio 3:4 .Measure the two parts.
- 25. An integer is chosen at random between 1 and 100. Find the probability that it is
 - (i) divisible by 8 (ii) not divisible by 8

OR

One card is drawn at random from a well shuffled pack of 52 cards .Find the probability of drawing (i) Neither an ace nor a king. (ii) a non-spade.

26. From an airport, two aeroplanes start at the same time. If speed of first aeroplane due north is 500km/h and that of other due east is 650km/h, then find the distance between two aeroplanes after 2 hours.

OR

Prove that the diagonals of a trapezium intersect each other in the same ratio.

SECTION C: (Questions 27 - 34 carry 3 marks each)

- 27. Find sum of all natural numbers between 200 and 1502 which are exactly divisible by 8.
- 28. ABCD is a parallelogram with co-ordinates of its vertices as A (-2, -1), B (1, 0), C (4, 3) and D (1, 2). Show that the diagonal AC divides it in to two triangles equal in area. Also find the length of the diagonal AC.
- 29. (i) Prove that $\sqrt{5}$ is an irrational number.

OR

(ii) The traffic lights at three different road crossings change after every 48 seconds, 72 seconds and 108 seconds respectively. If they all change simultaneously at 8:00 hours, then at what time will they again change simultaneously?

30. Prove that $\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} = 2\csc\theta$

OR

Given $tan\theta = \frac{4}{3}$, Evaluate $\frac{2\sin\theta\cos\theta}{\cos^2\theta - \sin^2\theta}$.

- 31. From the top of a 12m high building, the angle of elevation of the top of a tower is 60° and the angle of depression of its foot is 45° . Determine the height of the tower.
- 32. A chord of a circle of radius 10cm subtends a right angle at the centre. Find the area of the minor segment and the area of the major segment (Use $\pi = 3.14$).

OR

A car has two wipers which do not overlap. Each wiper has a blade of length 25 cm sweeping through an angle of 115°. Find the total area cleaned at each sweep of the blades.

- 33. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre.
- 34. A medicine capsule is in the shape of a cylinder with two hemispheres stuck to each of its ends (see Fig). The length of the entire capsule is

 14 mm and the diameter of the capsule is 5 mm.

 Find its surface area.

SECTION D: (Questions 35 - 40 carry 4 marks each)

- 35. Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.
- 36. As observed from the top of a 100m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships. ($\sqrt{3} = 1.732$)

OR

The shadow of a tower standing on a level ground is found to be 40 m longer when the sun's altitude is 30° than when it is 60°. Find the height of the tower.

37. A metallic right circular cone 20 cm high and whose vertical angle is 60° is cut into two parts at the middle of its height by a plane parallel to its base. If the frustum so obtained be drawn into a wire of diameter $\frac{1}{16}$ cm, find the length of the wire.

38. The area of an equilateral triangle ABC is 17320.5 cm². With each vertex of the triangle as centre, a circle is drawn with radius equal to half the length of the side of the triangle (See Fig given). Find the area of the shaded region. (use $\pi = 3.14$ and $\sqrt{3} = 1.73205$)

39. Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

OR

Draw a circle of radius 3 cm. Take two points P and Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q.

40. Find two consecutive odd positive integers, sum of whose square is 290.

OR

A motor boat whose speed is 18km/h in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.

End of the Question Paper