

INDIAN SCHOOL MUSCAT ANNUAL EXAMINATION

MATHEMATICS

CLASS: XI

Sub. Code: 041

Time Allotted: 3 Hrs.

16.02.2020

Max. Marks: 80

General Instructions:

- (i) All questions are compulsory.
- (ii) This question paper contains 36 questions divided into four sections A, B, C and D.
- Questions 1-20 in Section A are MCQ/Fill in the blanks/Very short answer type questions carrying 1 (iii) mark each.
- Questions 21-26 in Section B are short answer type questions carrying 2 marks each. (iv)
- Questions 27-32 in Section C are long-answer type-I questions carrying 4 marks each. (v)
- (vi) Questions 33-36 in Section D are long-answer type-II questions carrying 6 marks each.
- (vii) Use of calculator is not provided.

SECTION: A

For questions 1 to 10, choose the correct answer from the options given. Write the answer along with the chosen option:

1.	If $n(A)=m$ and $n(B)=n$, then the total number of n	relations that can be	defined from	A to B is
----	---	-----------------------	--------------	-----------

a) m^n

- b) n^m
- c) mn
- d) 2^{mn}

2. If
$$f(x) = ex + f$$
, where e and f are integers, $f(-1) = -5$ and $f(3) = 3$, then e and f are equal to

- a) e = -3, f = -1 b) e = 2, f = -3 c) e = 0, f = 2 d) e = 2, f = 3

3. The value of $\frac{1-\tan^2 15}{1+\tan^2 15}$ is

- a)1
- b) $\sqrt{3}$
- c) $\frac{\sqrt{3}}{2}$

d) 2

The third term of GP is 4. The product of its first 5 terms is 4.

- a) 4^{3}
- b) 4⁴
- c) 4^{5}

d) None of these

5.	If ${}^{n}C_{12} = {}^{n}C_{8}$, t	hen n is equal to					
	a) 20	b) 12	c) 6	d) 30			
6.	Everybody in a	room shakes hand	s with everyb	ody else.	Γhe total numb	er of handshakes is	3
	66.The total nu	umber of persons in	n the room is				
	a) 11	b) 13	c) 12		d) 14		
7.	The distance of	The point P(1, -3) from the lin	ie 2ÿ - 3x =	= 4 is		
	a) 13	b) $\frac{7}{13}\sqrt{13}$	c) $\sqrt{1}$	3	d) None of t	hese	
8.	If the focus of	a parabola is (0, -	3) and its dire	ectrix is y	= 3, then its eq	uation is	
	a) $x^2 = -12y$	b) $x^2 = 12y$	c)	$y^2 = 12x$	d) y^2	$e^2 = -12x$	
_							
9.		-3, -4) lies in the		` ~	•	1) 12: 1.1	
10	a) First octa	nt b) Sever	nth octant	c) Sec	cond octant	d) Eighth octant	•
10.	$\lim_{x\to 1}\frac{x^m-1}{x^n-1}$ is						
	a) 1	b) $\frac{m}{n}$	c) $-\frac{m}{n}$		d) $\frac{m^2}{n^2}$		
	(Q.11-Q.15) F	ill in the blanks.					
11.	If $f(x) = 1 + x$	$+\frac{x^2}{2}++$	$\frac{x^{100}}{100}$, then f''	'(1) is equa	l to		
12.	The value of ta	$ an \frac{19\pi}{3} $ is		•			
13.	If A and B are	two events associa	ited with a rar	ndom expe	riment such the	at $P(A) = 0.3$, $P(B)$	= 0.2
	and $P(A \cap B)$ =	= 0.1, then the valu	the of $P(A-B)$) is			
14.	The equation of	of yz-plane is		·			
15.	The ratio of the	e coefficient of x^{15}	to the term in	ndependen	t of x in $\left(x^2 + \frac{1}{2}\right)$	$(2/x)^{15}$ is	·
	OR						
	If the coefficie	ent of x^7 and x^8 in	$\left(2+\frac{x}{3}\right)^n$ are ϵ	equal, then	n is		

(Q.16-Q.20) Answer the following

- 16. Three coins are tossed once. Find the probability of getting exactly 2 tails.
- 17. If $A = \{1,2\}$, find P(A).
- 18. Express i^{102} in the form of a + ib.

OR

Find the multiplicative inverse $\sqrt{5} + 3i$.

- 19. Write the negation of the statement ' $\sqrt{7}$ is rational'.
- 20. An arc of a circle of radius 35 cm subtends an angle of 18° at the centre. Find the length of the arc.

SECTION: B

21. Find the domain and range of the function, $f(x) = \sqrt{16 - x^2}$.

OR

Determine the quadratic function f defined by $f(x) = ax^2 + bx + c$, if f(0) = 6, f(2) = 11 and f(-3) = 6

- 22. Convert the complex number $\frac{-16}{1+i\sqrt{3}}$ into polar form.
- 23. Find the equation of the set of the points P such that its distance from the points A (3, 4, -5) and B(-2, 1, 4) are equal.
- 24. How many terms of the G.P $3, \frac{3}{2}, \frac{3}{4}, \dots$ are needed to give the sum $\frac{3069}{512}$?

OR

If a, b, c are in G.P. and $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}}$, prove that x, y, z are in A.P.

- 25. Find the sum to n terms of the A.P., whose k^{th} term is 5k+1.
- 26. Find the number of arrangements of the letters of the word INDEPENDENCE. In how many of these arrangements do the words begin with I and end in P?

SECTION: C

Prove 1.2.3+2.3.4+....+n.(n+1)(n+2) = $\frac{n(n+1)(n+2)(n+3)}{4}$ using the principle of mathematical induction for all $n \in \mathbb{N}$.

- 28. Find the coordinate of the foci, the vertices, the length of major axis, minor axis, the eccentricity and the length of latus rectum of the ellipse $9x^2 + 16y^2 = 144$.
- 29. The letters of the word 'SOCIETY' are placed at random in a row. What is the probability that three vowels come together?

OR

20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the card is (i) a multiple of 4 (ii) not a multiple of 6?

30. Graph the given inequalities and shade the common solution region

$$2x + y \ge 4$$
; $x + y \le 3$; $2x - 3y \le 6$; $x \ge 0$; $y \ge 0$

- 31. The coefficients of $(r-1)^{th}$, r^{th} , $(r+1)^{th}$ terms in the expansion of $(x+1)^n$ are in the ratio 1:3:5. Find n and r.
- 32. Find the derivative of $\tan x$ with respect to x from first principle.

OR

Differentiate: $(x + \cos x)(x - \tan x)$ with respect to x.

SECTION: D

- 33. If p and q are the length of perpendiculars from the origin to the lines $x\cos\theta y\sin\theta = k\cos 2\theta$ and $x\sec\theta + y\cos ec\theta = k$ respectively, prove that $p^2 + 4q^2 = k^2$
- 34. In a survey of 100 students regarding watching T.V., it was found that 28 watch action movies, 30 watch comedy serials, 42 watch news channels, 8 watch action movies and comedy serials, 10 watch action movies and news channels, 5 watch comedy serials and news channels and 3 watch all the three programs. Draw a Venn diagram to illustrate this information and find
 - (i) how many watch news channels only?
 - (ii) how many watch at least one of the three channels?
 - (iii) how many do not watch any of the three channels?
- 35. Prove that $\cos 2x \cos \frac{x}{2} \cos 3x \cos \frac{9x}{2} = \sin 5x \sin \frac{5x}{2}$

OR

Find the general solution of $\sin 2x - \sin 4x + \sin 6x = 0$.

36. The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

 $$\operatorname{\textbf{OR}}$$ Calculate mean , variance and standard deviation for the following distribution.

classes	30-40	40-50	50-60	60-70	70-80	80-90	90-100
:							
	2	7	10	1.5	-	 	+ -
Frequency	3	7	12	15	8	3	2

End of the Question Paper

INDIAN SCHOOL MUSCAT ANNUAL EXAMINATION **MATHEMATICS**

CLASS: XI

Sub. Code: 041

Time Allotted: 3 Hrs.

16.02.2020

Max. Marks: 80

General Instructions:

- (i) All questions are compulsory.
- This question paper contains 36 questions divided into four sections A, B, C and D. (ii)
- Questions 1-20 in Section A are MCQ/Fill in the blanks/Very short answer type questions carrying 1 (iii) mark each.
- Questions 21-26 in Section B are short answer type questions carrying 2 marks each. (iv)
- (v) Questions 27-32 in Section C are long-answer type-I questions carrying 4 marks each.
- Questions 33-36 in Section D are long-answer type-II questions carrying 6 marks each. (vi)
- (vii) Use of calculator is not provided.

SECTION: A

For questions 1 to 10, choose the correct answer from the options given. Write the answer along with the chosen option:

- 1. The point (-2, -3, -4) lies in the
 - a) First octant
- b) Seventh octant
- c) Second octant
- d) Eighth octant

2.

The third term of GP is 4. The product of its first 5 terms is

- a) 4^{3}
- b) 4⁴
- c) 4^{5}

d) None of these

- 3. $\lim_{x\to 1}\frac{x^m-1}{x^n-1}$ is
 - a) 1
- b) $\frac{m}{n}$ c) $-\frac{m}{n}$
- d) $\frac{m^2}{n^2}$

4.	If $f(x) = ex + f$, who	ere e and f are 11	itegers, $f(-1)$	= -3 and $f(3) = 3$	then e and I are equal to
	a) $e = -3$, $f = -1$	b) $e = 2$	f = -3	c) $e=0$, $f=2$	d) $e = 2, f = 3$
5.	Everybody in a room	shakes hands w	rith everybody	else. The total num	nber of handshakes is
	66.The total number	of persons in th	e room is		
	a) 11 l) 13	c) 12	d) 14	
6.	If ${}^{n}C_{12} = {}^{n}C_{8}$, then n	is equal to			
	a) 20	b) 12	c) 6	d) 30	
7.	The distance of the p	oint P(1, -3) fi	om the line 2y	y - 3x = 4 is	
	a) 13	b) $\frac{7}{13}\sqrt{13}$	c) $\sqrt{13}$	d) None of	these
8.	If the focus of a para	bola is (0, -3)	and its directri	$x ext{ is } y = 3, ext{ then its } or $	equation is
	a) $x^2 = -12y$	b) $x^2 = 12y$	c) $y^2 = $	= 12x d)	$y^2 = -12x$
9.	If $n(A)=m$ and $n(B)=$	n, then the total	number of rel	ations that can be d	lefined from A to B is
	a) <i>m</i> ⁿ	b) <i>n</i> ^m	c) mn	. d) 2 ^{mn}
10.	The value of $\frac{1-\tan^2}{1+\tan^2}$	$\frac{15}{15}$ is			
	a)1 b)	$\sqrt{3}$	c) $\frac{\sqrt{3}}{2}$	Ć	1) 2
	(Q.11-Q.15) Fill in t	the blanks.			
11.	If $f(x) = 1 + x + \frac{x^2}{2}$	$+ \dots + \frac{x^{10}}{10}$	$\frac{1}{0}$, then $f'(1)$ i	s equal to	·
12.	The value of $\sin \frac{31\pi}{3}$	- is		_• <u>.</u>	
13.	If A and B are two e	vents associated	l with a randor	n experiment such	that $P(A) = 0.3$, $P(B) = 0.2$
	and $P(A \cap B) = 0.1$,	then the value o	of $P(A-B)$ is		•
14.	The equation of xy-p	olane is			
15.	The ratio of the coef	ficient of x^{15} to	the term indep	pendent of x in (x^2)	$+\frac{2}{x}^{15}$ is
			Ol	₹	

If the coefficient of x^7 and x^8 in $\left(2 + \frac{x}{3}\right)^n$ are equal, then n is ______.

(Q.16-Q.20) Answer the following

- 16. Three coins are tossed once. Find the probability of getting exactly 2 tails.
- 17. If $A = \{1,2\}$, find P(A).
- 18. Express i^{102} in the form of a + ib.

OR

Find the multiplicative inverse $\sqrt{5} + 3i$.

- 19. Write the negation of the statement ' $\sqrt{7}$ is rational'.
- 20. An arc of a circle of radius 35 cm subtends an angle of 18° at the centre. Find the length of the arc.

SECTION: B

21. Find the domain and range of the function, f(x) = 3 + |x + 5|.

OR

Determine the quadratic function f defined by $f(x) = ax^2 + bx + c$, if f(0) = 6, f(2) = 11 and f(-3) = 6

- 22. Find the sum to n terms of the A.P., whose k^{th} term is 5k+1.
- 23. Find the equation of the set of the points P such that its distance from the points A (3, 4, -5) and B(-2, 1, 4) are equal.
- How many terms of the G.P $3, \frac{3}{2}, \frac{3}{4}, \dots$ are needed to give the sum $\frac{3069}{512}$?

OR

If a, b, c are in G.P. and $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}}$, prove that x, y, z are in A.P.

- 25. Convert the complex number $\frac{-16}{1+i\sqrt{3}}$ into polar form.
- 26. Find the number of arrangements of the letters of the word INDEPENDENCE. In how many of these arrangements do the words begin with I and end in P?

SECTION: C

- 27. The coefficients of $(r-1)^{th}$, r^{th} , $(r+1)^{th}$ terms in the expansion of $(x+1)^n$ are in the ratio 1:3:5. Find n and r.
- 28. Find the coordinate of the foci, the vertices, the length of transverse axis, conjugate axis, the eccentricity and the length of latus rectum of the hyperbola $9y^2 4x^2 = 36$.
- 29. The letters of the word 'SOCIETY' are placed at random in a row. What is the probability that three vowels come together?

OR

20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the card is (i) a multiple of 4 (ii) not a multiple of 6?

30. Graph the given inequalities and shade the common solution region

$$2x + y \ge 4$$
; $x + y \le 3$; $2x - 3y \le 6$; $x \ge 0$; $y \ge 0$

31. Find the derivative of $\cos x$ with respect to x from first principle.

OR

Differentiate: $(x + \cos x)(x - \tan x)$ with respect to x.

Prove 1.2.3+2.3.4+.....+n.(n+1)(n+2) = $\frac{n(n+1)(n+2)(n+3)}{4}$ using the principle of mathematical induction for all $n \in \mathbb{N}$.

SECTION: D

- 33. If p and q are the length of perpendiculars from the origin to the lines $x\cos\theta y\sin\theta = k\cos 2\theta$ and $x\sec\theta + y\cos ec\theta = k$ respectively, prove that $p^2 + 4q^2 = k^2$
- 34. Prove that $\cos 2x \cos \frac{x}{2} \cos 3x \cos \frac{9x}{2} = \sin 5x \sin \frac{5x}{2}$

OR

Find the general solution of $\sin 2x - \sin 4x + \sin 6x = 0$.

35. In a survey of 100 students regarding watching T.V., it was found that 28 watch action movies, 30 watch comedy serials, 42 watch news channels, 8 watch action movies and comedy serials, 10 watch action movies and news channels, 5 watch comedy serials and news channels and 3 watch all the three programs. Draw a Venn diagram to illustrate this information and find

- (i) how many watch news channels only?
- (ii) how many watch at least one of the three channels?
- (iii) how many do not watch any of the three channels?
- 36. The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

OR

Calculate mean, variance and standard deviation for the following distribution.

classes	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency	3	7	12	15	8	3	2

End of the Question Paper

INDIAN SCHOOL MUSCAT ANNUAL EXAMINATION

MATHEMATICS

CLASS: XI

Sub. Code: 041

Time Allotted: 3 Hrs.

16.02.2020

Max. Marks: 80

General Instructions:

- (i) All questions are compulsory.
- This question paper contains 36 questions divided into four sections A, B, C and D. (ii)
- Questions 1-20 in Section A are MCQ/Fill in the blanks/Very short answer type questions carrying 1 (iii) mark each.
- Questions 21-26 in Section B are short answer type questions carrying 2 marks each. (iv)
- Questions 27-32 in Section C are long-answer type-I questions carrying 4 marks each. (v)
- Questions 33-36 in Section D are long-answer type-II questions carrying 6 marks each. (vi)
- (vii) Use of calculator is not provided.

SECTION: A

For questions 1 to 10, choose the correct answer from the options given. Write the answer along with the chosen option:

1. $\lim_{x\to 1}\frac{x^m-1}{x^n-1}$ is

- a) 1
- b) $\frac{m}{n}$ c) $-\frac{m}{n}$
- d) $\frac{m^2}{n^2}$
- 2. The third term of GP is 4. The product of its first 5 terms is
 - a) 4^{3}
- b) 4⁴
- c) 4^{5}

d) None of these

- The point (-2, -3, -4) lies in the 3.
 - a) First octant
- b) Seventh octant
- c) Second octant
- d) Eighth octant
- 4. If f(x) = ex + f, where e and f are integers, f(-1) = -5 and f(3) = 3, then e and f are equal to
 - a) e = -3, f = -1 b) e = 2, f = -3 c) e = 0, f = 2 d) e = 2, f = 3

٥.	If ${}^{n}C_{12} = {}^{n}C_{8}$, then	in is equal to						
	a) 20	b) 12	c) 6 d)	30				
6.	Everybody in a ro	oom shakes hands v	with everybody else.	The total number of handsh	akes is			
	66.The total num	ber of persons in th	e room is					
	a) 11	b) 13	c) 12	d) 14				
7.	The distance of th	the point $P(1, -3)$ fr	from the line $2y - 3x = 3x = 3$	= 4 is				
	a) 13	b) $\frac{7}{13}\sqrt{13}$	c) $\sqrt{13}$	d) None of these				
8.	If the focus of a p	earabola is (0, -3)	and its directrix is y	= 3, then its equation is				
	a) $x^2 = -12y$	b) $x^2 = 12y$	c) $y^2 = 12x$	d) $y^2 = -12x$				
9.	The value of $\frac{1-t}{1+t}$	$\frac{\tan^2 15}{\tan^2 15} \text{ is}$						
	a) 1	b) $\sqrt{3}$	c) $\frac{\sqrt{3}}{2}$	d) 2				
10.	If n(A)=m and n(B)=n, then the total number of relations that can be defined from A to B is							
	a) m^n	b) <i>n</i> ^m	c) mn	d) 2 ^{mn}				
	(Q.11-Q.15) Fill	in the blanks.						
11.	If $f(x) = 1 + x + \cdots$	$\frac{x^2}{2} + \dots + \frac{x^{10}}{10}$	$\frac{1}{0}$, then $f'(1)$ is equal	ıl to	_•			
12.	The value of sin-	$\frac{31\pi}{3}$ is	·					
13.	If A and B are tw	o events associated	with a random expe	eriment such that $P(A) = 0.3$,	P(B) = 0.2			
	and $P(A \cap B) = 0$.1, then the value o	of $P(A-B)$ is	·				
14.	The equation of x	xz-plane is	·					
15.	The ratio of the c	coefficient of x^{15} to	the term independer	at of x in $(x^2 + \frac{2}{x})^{15}$ is				
			OR					
	If the coefficient	of x^7 and x^8 in $(2 + $	$+\frac{x}{3}$ are equal, then	nnis				
	(Q.16- Q.20) An	swer the following	3					
16.	Three coins are t	ossed once. Find th	e probability of gett	ing exactly 2 tails.				

- 17. If $A = \{1,2\}$, find P(A).
- 18. Express i^{102} in the form of a + ib.

OR

Find the multiplicative inverse $\sqrt{5} + 3i$.

- 19. Write the negation of the statement ' $\sqrt{7}$ is rational'.
- 20. An arc of a circle of radius 35 cm subtends an angle of 18° at the centre. Find the length of the arc.

SECTION - B

21. Find the domain and range of the function, $f(x) = \sqrt{x-2}$.

OR

Determine the quadratic function f defined by $f(x) = ax^2 + bx + c$, if f(0) = 6, f(2) = 11 and f(-3) = 6

- 22. Convert the complex number $\frac{-16}{1+i\sqrt{3}}$ into polar form.
- 23. Find the equation of the set of the points P such that its distance from the points A (3, 4, -5) and B(-2, 1, 4) are equal.
- 24. How many terms of the G.P $3, \frac{3}{2}, \frac{3}{4}, \dots$ are needed to give the sum $\frac{3069}{512}$?

OR

If a, b, c are in G.P. and $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}}$, prove that x, y, z are in A.P.

- 25. Find the sum to n terms of the A.P., whose k^{th} term is 5k+1.
- 26. Find the number of arrangements of the letters of the word INDEPENDENCE. In how many of these arrangements do the words begin with I and end in P?

SECTION: C

27. The letters of the word 'SOCIETY' are placed at random in a row. What is the probability that three vowels come together?

OR

- 20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the card is (i) a multiple of 4 (ii) not a multiple of 6?
- 28. Find the coordinate of the foci, the vertices, the length of transverse axis, conjugate axis, the eccentricity and the length of latus rectum of the hyperbola $9x^2 16y^2 = 144$.

- Prove 1.2.3+2.3.4+....+n.(n+1)(n+2) = $\frac{n(n+1)(n+2)(n+3)}{4}$ using the principle of mathematical induction for all $n \in \mathbb{N}$.
- 30. Find the derivative of $\sin x$ with respect to x from first principle.

OR

Differentiate: $(x + \cos x)(x - \tan x)$ with respect to x.

- 31. The coefficients of $(r-1)^{th}$, r^{th} , $(r+1)^{th}$ terms in the expansion of $(x+1)^n$ are in the ratio 1:3:5. Find n and r.
- 32. Graph the given inequalities and shade the common solution region

$$2x + y \ge 4$$
; $x + y \le 3$; $2x - 3y \le 6$; $x \ge 0$; $y \ge 0$

SECTION: D

- 33. If p and q are the length of perpendiculars from the origin to the lines $x\cos\theta y\sin\theta = k\cos 2\theta$ and $x\sec\theta + y\cos ec\theta = k$ respectively, prove that $p^2 + 4q^2 = k^2$
- 34. In a survey of 100 students regarding watching T.V., it was found that 28 watch action movies, 30 watch comedy serials, 42 watch news channels, 8 watch action movies and comedy serials, 10 watch action movies and news channels, 5 watch comedy serials and news channels and 3 watch all the three programs. Draw a Venn diagram to illustrate this information and find
 - (i) how many watch news channels only?
 - (ii) how many watch at least one of the three channels?
 - (ii) how many do not watch any of the three channels?
- 35. Prove that $\cos 2x \cos \frac{x}{2} \cos 3x \cos \frac{9x}{2} = \sin 5x \sin \frac{5x}{2}$

ΛR

Find the general solution of $\sin 2x - \sin 4x + \sin 6x = 0$.

36. The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

OR

Calculate mean, variance and standard deviation for the following distribution.

classes	30-40	40-50	50-60	60-70	70-80	80-90	90-100
i							
Frequency	3	7	12	15	8	3	2

End of the Question Paper