INDIAN SCHOOL MUSCAT
 CLASS XI
 CHEMISTRY WORK SHEET - 11 THERMODYNAMICS

1.	What will be the sign of entropy change for the following changes? a) In an isolated system, two identical gases are allowed to mix under identical conditions. b) $\mathrm{I}_{2}(\mathrm{~g}) \rightarrow \mathrm{I}_{2}(\mathrm{~s})$ c) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$ d) Dissolution of sugar in water contained in a thermos flask.
2.	Calculate the K_{c} at 298 K for the reaction $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$, if $\Delta \mathrm{G}^{\circ} \mathrm{f}(\mathrm{HI})=1.3 \mathrm{~kJ} / \mathrm{mole}$.
3.	For the equilibrium $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}, \mathrm{K}=1.8 \times 10^{-7}$. Calculate $\Delta \mathrm{G}^{\circ}$ of reaction.
4.	For the reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$, calculate the $\Delta \mathrm{G}$ at 600 K if enthalpy and entropy changes are $-110 \mathrm{~kJ} / \mathrm{mole}$ and $150 \mathrm{~J} / \mathrm{Kmole}$.
5.	$\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ for the reaction $\mathrm{Ag}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{Ag}+1 / 2 \mathrm{O}_{2}$ are $30.56 \mathrm{KJ} / \mathrm{mole}$ and $60 \mathrm{~J} / \mathrm{K}$ respectively. Calculate the temperature at which the free energy change for this reaction will be zero. Predict whether the forward reaction will be favoured above/below this T.
6.	For the synthesis of $\mathrm{NH}_{3}, \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$, calculate K_{p} at 300 K if $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ of NH_{3} as $-46.2 \mathrm{~kJ} /$ mole and $\Delta \mathrm{S}^{\circ}$ for the reaction is $198.3 \mathrm{~J} / \mathrm{Kmole}$.
7.	Differentiate between a) closed system and an isolated system b) heat of formation and heat of reaction c) heat of hydration and heat of solution
8.	The $\Delta \mathrm{H}_{\text {vap }}$ of water at $100^{\circ} \mathrm{C}$ is $41 \mathrm{~kJ} /$ mole. Calculate the internal energy change.
9.	Define C_{v} and C_{p} for an ideal gas. Derive a relationship between C_{v} and C_{p}.
10.	Calculate the $\Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}$ of benzene if $\Delta \mathrm{H}_{\text {comb }}$ of benzene, carbon and hydrogen are 3267,393 and $286 \mathrm{~kJ} /$ mole respectively.
11.	The mean bond enthalpies of $\mathrm{N} \equiv \mathrm{N}$ and $\mathrm{H}-\mathrm{H}$ are 946 and $436 \mathrm{~kJ} /$ mole respectively. If heat of formation of ammonia is $-46 \mathrm{~kJ} / \mathrm{mole}$, calculate the mean BE in ammonia.
12.	Explain the formation of NaBr using Born-Haber cycle.
13.	Calculate heat change at constant pressure if heat change at constant volume for the reaction $\mathrm{NH}_{2} \mathrm{CN}(\mathrm{g})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at 298 K is -742 $\mathrm{kJ} /$ mole.
14.	Calculate the entropy change in surroundings when 36 g of water is formed under standard conditions. $\Delta \mathrm{H}^{0}$ f of water $=-286 \mathrm{~kJ} / \mathrm{mole}$
15.	What is the work done on a gas when 10 lt of the gas is compressed to 4.5 lt under a constant pressure of $10^{3} \mathrm{kPa}$?
16.	Calculate the work done when 2.5 moles of an ideal gas at 300 K is isothermally and reversibly compressed from a volume of $5 \mathrm{~m}^{3}$ to a volume of $2 \mathrm{~m}^{3}$.
17.	What would be the work done when the pressure of 2 moles of an ideal gas is changed from 2 bar to 5 bar isothermally and reversibly at $25^{\circ} \mathrm{C}$?
18.	When will heat change at constant volume and heat change at constant pressure be equal?
19.	Dissolution of ammonium chloride in water is endothermic yet it is a spontaneous

INDIAN SCHOOL MUSCAT

CLASS XI

	process. Explain.
20.	Define (i) Heat capacity (ii) Molar heat capacity (iii) Enthalpy of a reaction (iv) Entropy (v) Gibb's free energy (vi) Residual entropy
21.	Derive the relationship between Cp and Cv
22.	Stater i. Hess's law of constant heat summation ii. iii. Second law of thermodynamics
23.	Discuss the role of temperature in determining the spontaneity of a process
24.	Derive the relation $\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} R \mathrm{RT}$

