CLASS:	INDIAN SCHOOL MUSCAT	SUBJECT:CHEMIST
XI	SECOND PERIODIC TEST	RY
	SET - B	
QP.NO.	VALUE POINTS	SPLIT UP MARKS
1.	.b) +3	1
2.	d) CH ₃ -C(CH ₃)=CHCH ₃	1
3.	Reduction potential	1
4.	Distillation under reduced pressure	1
5.	disproportionation reaction	1
6.	a) CH ₃ CH(CH ₃)CH(CH ₃)CHO	1+1
	b) But-3-yn-1-ol	
7.	$E^{0} \text{ cell } = E_{\text{cathode}} - E_{\text{anode}} = (0.34) - (-1.66) = 2.00 \text{ V}$	1
	A1/ A13+ II G 2+/ G	1
0	Al/ Al ³⁺ Cu ²⁺ / Cu	1
8.	a) 4-chloro-2- methylbutanoicacid	1
9.	b) 1-Phenylpropan-2-ol $Cr(OH)_3 + H2O \rightarrow CrO_4^{2-} + 5H + +3e$	1 1X3
9.	$CI(OII)3 + II2O \rightarrow CIO4 + 3II++3e-$	IAS
	$IO_3^- + 6e + 6H^+ \rightarrow I^- + 3H2O$	
	$2Cr(OH)_3 + IO_3^- + 4OH^- \rightarrow 2 CrO_4^{2-} + I^- + 5H2O$	
10.	a) The sodium fusion extract is acidified with acetic acid and lead	
10.	acetate is added to it. A black precipitate of lead sulphide is	2
	formed.	
	$2Na + S \rightarrow Na_2S$	
	$S^{2-} + Pb^{2+} \rightarrow PbS$	
	(OR sodium nitroprusside test)	1/2+1/2
	1) PNII - C II O - N - 1 - 1 1	
	b) RNH ₂ ,, C ₂ H ₅ O ⁻ Nucleophiles	
11.	NO ₂ ⁺ , BCl ₃ Electrophiles a) CH ₃ -CH ₂ -CH ₂ OH and CH ₃ CH ₂ -O-CH ₃	¹ / ₂ +1/2
11.	b) overlap between an empty p- orbital /p orbital of an unsaturated	$\frac{72+1}{2}$
	system with adjacent C- H sigma bond is known as hyper	/2
	conjugation	
	C :ÖH ⁺ÖH ⁺ÖH ⁺ÖH	
		1½
	c) ————————————————————————————————————	