INDIAN SCHOOL MUSCAT

SECOND PRE-BOARD EXAMINATION

FEBRUARY 2020

SET A

CLASS XII

Marking Scheme-PHYSICS [THEORY]

Q.NO	Answers	Marks
•		(with
		split
		up)
1.	(a) Decreases K times	1
2.	(d) four times	1
3.	(d) 9 ohm	1
4.	(b) 64W	1
5.	(d) torsional constant	1
6.	(c) four times	1
7.	(a) current and voltage are in phase	1
8.	b. The bulb glows dimmer	1
9.	a) 600Hz OR a. $7.14 \times 10^{14}\text{Hz}$	1
10.	b) holes	1
11.	zero	1
12.	Ampere-metre	1
13.	retentivity	1
14.	High retentivity, high coercivity, high permeability (any 2)	1
15.	$7.5 \times 10^3 \text{volt}$	1
16.	Convex mirror	1
	Spherical wavefront	1
18.	Photoelectric effect	1
19.	$R = R_0 A^{1/3}$	1
20.	100Hz	1
20.	OR	1
	(i) Width decreases (ii) width increases	}
21.	Deriving an expression for the magnetic field along the axis of a toroidal solenoid using	
	Ampere's circuital law	
	Ampere 3 circuitar law	1
	OR	1/2
	(i)Ratio of intensity of magnetization to the magnetizing field	1/2
	$\chi = (\mu_r - 1)$	/2
	(ii)	1/2
	0.96 Diamagnetic	1/2
	500 Ferromagnetic	
22.	obtaining an expression for electric field intensity due to a uniformly charged spherical shell of radius	1+1

		ş
	R at a point (i) outside the shell and (ii) inside the shell.	7
23.	(i) A thick copper strip offers negligible resistance so it does not alter the value of	1
	resistances used in the metre bridge.	1
	(ii) Manganin or constantan because of low temperature coefficient of resistivity.	1
24.	Cassegrain (reflecting type) telescope-labelled diagram	$\frac{1}{2}$
25.	Polarization by reflection-diagram	1/2
	Derivation of Brewster's law	1.
26		11/2
26.	Obtaining the expression $r = \frac{\varepsilon_0 n^2 h^2}{\pi m e^2}$	
	$\frac{7me^2}{}$	
	OR	1
	Deriving $N = N_0 e^{-\lambda t}$	İ
27.	any two differences between an intrinsic semiconductor and a p-type semiconductor.	1+1
28.	λ	
	$E = \frac{\lambda}{2\pi\varepsilon_0 r} \dots (1)$	1/2
	$2\pi \varepsilon_0 r$	
	The revolving electron experience an electrostatic force and provides necessarily]
	centripetal force.	17
	$eE = \frac{mv^2}{r} \qquad \dots (2)$	1/2
	$eE = \frac{mc}{r} \qquad \dots (2)$	
	$\frac{e.\lambda}{mv^2} = \frac{mv^2}{mv^2}$	
	$2\pi\epsilon_0 r$ r	
	$\Rightarrow mv^2 = \frac{e\lambda}{2\pi\varepsilon_0}$	
	$\Rightarrow mv^2 = \frac{\epsilon \kappa}{\epsilon}$	17
	$2\pi \varepsilon_0$	1/2
	$K = \frac{1}{2}mv^2 = \frac{e\lambda}{2}$	17
	Kinetic energy of the electron $2 ext{4}\pi\epsilon_0$	1/2
	(ii)	
Ī		1
		1
	KE	
·		
1	1	
29.	2.77	
27.	(i) Proving $T = \frac{2\pi m}{2}$	1 ½
	qB	
	The applied voltage is adjusted so that the polarity of dees is reversed in the same time	
	that it takes the ion to complete one half of the revolution.	1/2
	(ii)	,

4	ii) No, The mass of the two particles, i.e deuteron and proton, is different. Since (cyclotron)	
	frequency depends inversely on the mass, they cannot be accelerated by the same oscillator	1
	frequency.	or
30.	$\epsilon = \frac{1}{2} B_1 \cos \delta I^2 \omega$	1/
		1/2
	$= \frac{1}{2} \times 0.4 \times 10^{-4} \cos 60^{\circ} \times (0.5)^{2} \times 2 \pi v$	
	2	1/2
	$= \frac{1}{2} \times 0.4 \times 10^{-4} \times \frac{1}{2} \times (0.5)^2 \times 2 \pi v \times \left(\frac{120 \text{ rev}}{60 \text{ sec}} \right)$	
	$= 10^{-5} \times 0.25 \times 2 \times 3.14 \times 2$	1/2
	$= 3.14 \times 10^{-5} \text{ volt}$	1/2
	Emf induced is not dependent on the number of spokes.	1
	OR	
	$R = \frac{V_R}{I_R} = 90/3 = 30\Omega$	
	$X_C = \frac{V_C}{I_C} = 120/3 = 40\Omega$	
II	impedance, $z = \sqrt{R^2 + X_C^2} = \sqrt{30^2 + 40^2} = 50\Omega$	1/2
	$X_L = X_C$	1/2
	as power factor = 1	. /2
	$2\pi \upsilon L = 40$	1
	$100\pi L = 40$	1/2
	$L = 2/5\pi Henry$	
31.	(i)If a charge particle oscillatos with an an C	1/2
	(i)If a charge particle oscillates with some frequency, produces an oscillating electric field in space, which produces an oscillating magnetic field, which inturn, is a source of electric field, and so on. Thus oscillating electric fields and magnetic fields regenerate	1
	each other, and an electromagnetic wave propagates in the space	
	(II)IN MICrowave oven, the frequency of the microwaves is selected to match the	1
	resonant frequency of water molecules so that energy from the waves get transferred efficiently to the kinetic energy of the molecules. This kinetic energy raises the	
	temperature of any food containing water	
	(III) Due to short wavelength, they have high penetrating power with respect to attend to	
	less diffraction in the atmospheric layers. So these waves are suitable for the radar systems used in aircraft navigation.	1

32.	2. For lens L ₁		,
	1 1 1		
	$\frac{1}{f_1} = \frac{1}{v_1} - \frac{1}{u_1}$		1
	$\frac{1}{20} = \frac{1}{v_1} - \frac{1}{-40} \Rightarrow v_1 = 40 \text{ cm}$		
	$v_1 = 40$		
	1 1 1		
	For lens $L_{3'}$ $\frac{1}{f_3} = \frac{1}{v_3} - \frac{1}{u_3}$		
			1
	$f_3 = +20 \text{cm}, v_3 = 20 \text{cm}$		
-	1 1 1		
	$\frac{1}{20} = \frac{1}{20} + \frac{1}{u_3}$		
	the change that I must send as the send of the land		* .
	It shows that L ₂ must render the rays parallel to t		E 1/2
ļ	image (l_1) , formed by L_1 , must be at a distance of	20 cm from L_2 (at the focus of L_2)	
			1/2
·	Therefore, distance between L_1 and L_2 (= 40 + 20)) = 60 cm distance between L, and	
	L, can have any value.		
33.			1+1
	[A		
	1-100		
:	Repulsive		
	MeV B		
	Anracevo		
	r (tm)———		
	The characteristic properties of nuclear force:		1/2
ĺ	i) The nuclear force is short range force.		'2
34.	iii) The nuclear force is independent of electric charge.		1/2
<i>3</i> 4.	(i) Zener diode and solar cell (ii) Zener breakdown voltage		1/2+1/2
	(iii)Q-short circuit current, P-open circuit voltage		
35.	(i) A suitable diagram showing An electric dipo	le is held in a uniform electric field	1/2+1/2
	proving that it does not undergo any translator	ry motion	1
	obtaining an expression for torque acting on it		1
	The direction of torque is perpendicular to the	e plane containing \vec{p} and \vec{E} given by	1/2
	right hand rule. (ii) If the field is not uniform, the net force wi	31.1	
	(ii) If the field is not uniform, the net force wi	in be non-zero in addition to torque.	1

· V	(iii) If dipole is parallel to the direction of increasing field, as shown in	1
	figure there is a net force on electric dipole along the direction of	1
	increasing field. In same way if dipole is antiparallel, there is a net	
	force on dipole in the direction opposite to the direction of increasing	
	field.	
	_ <u>E</u> _	
	Force on -q	
	Force on q Force on g	
	-q P q Force on -q	-
	Direction of net force = Direction of net force =	-
	Direction of increasing field = Direction of increasing field =	
	OR	,
		3
	(i) Obtaining the relation $\rho = \frac{m}{ne^2 \tau}$	1
	(ii) Length of conductor, cross sectional area, temperature and nature (any 2)	
	(iii) They have a very high value of resistivity. Their value of resistivity does	1
	not change even for very high values of temperature.	·
	(i) Ray diagram	1
	(ii) Derivation	2
	(iii)Sign conventions used	1
	(iv)The focal length increases	1
	OR	
	(i) Obtaining the conditions for constructive and destructive interference	3
	(ii) The fringe width decreases to 3/4 times	-
		1
	(iii)any 2 differences between interference and diffraction	$\frac{1}{2} + \frac{1}{2}$
*		72 + 72
	(i) graph showing the variation of photoelectric current with intensity of light.	1
	(ii)	
	Light consists of photons. When a photon inferacts with an electron it gives its	
	entire energy to the electron and then exists no longer. Energy used to knock ou	2
	the electron. (hv) is work function and rest energy is given to electron is kE.	
	$\phi + \frac{1}{2} mv^2$	
	$\Rightarrow hv = \downarrow kE \text{ of electron}$	
	Work function	-
	$h_v \rightarrow \text{energy of photon}.$ (i) Creates intensity has no effect on $k\Gamma$ of an electron count he symbol and kV	1/2
	(i) Greater intensity has no effect on kE of an electron cannot be explained by	1/2
	wave theory.	
	l ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	

(ii) Wave theory also fails to explain the existence of threshold energy. 1/2 +1/2 (iii)(a) No (b) No i) According to Bohr's second postulate, we have 1 ½ $mvr_n = n \frac{h}{2\pi}$ $\Rightarrow 2\pi r_n = \frac{nh}{mv}$ But, as per De-broglie hypothesis $\frac{h}{mv} = \frac{h}{p} = \lambda$ Therefore, $2\pi r_n = n\lambda$; where is the de-broglie wavelength. 1 1/2 (iii) 108 106 No. of scattered α particles — 104 10² 10 45° 90° 135° 180° Scattering angle θ-If impact parameter 'b' reduces to zero, coulomb force increases, and hence alpha particles are scattered at angle $\theta > 90^{\circ}$, and only one alpha particle is scattered at angle 180°.