

INDIAN SCHOOL MUSCAT SECOND PERIODIC ASSESSMENT

PHYSICS

CLASS: 12 Sub.Code: 042 TimeAllotted:50mts.

19.05.2019 Max .Marks: 20

GENERAL INSTRUCTIONS:

All questions are compulsory.

There are 11 questions in all.

Question no 1 to 5 carry one mark each.

Question no 6 to 18 carry two marks each.

Question no 9 to 11 carry three marks each.

$$\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 Nm^2 C^{-2} N$$
 $\varepsilon_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$

	- 0	
1.	How does the energy stored in a capacitor change if the plates of a charged capacitor are moved farther, the battery remaining connected?	1
	moved farther, the battery remaining connected:	
2.	Define electrical conductance of a conductor and give its SI unit.	1
3.	Two materials Si and Cu, are cooled from 300 K to 60 K. What will be the effect on their resistivity?	1
4.	Express dielectric constant of a medium in terms of capacitance. What is its SI unit?	1
5.	What do you mean by dielectric strength of a dielectric?	1
6.	Derive an expression for the energy stored in a parallel plate capacitor C , charged to a potential difference V.	2
7.	The plot of the variation of potential difference across a combination of three identical cells in series, versus current is shown in figure. What is the emf and internal resistance of each cell?	2

8.	Two conducting wires \mathbf{X} and \mathbf{Y} of same diameter but different materials are joined in series	2
	across a battery. If the number density of electrons in \mathbf{X} is twice that in \mathbf{Y} , find the ratio of	
	drift velocity of electrons in the two wires.	
9.	Derive an expression for drift velocity of free electrons in a conductor in terms of relaxation	3
	time of electron.	
10.	Two cells of emfs \mathbf{E}_1 and \mathbf{E}_2 having internal resistances \mathbf{r}_1 and \mathbf{r}_2 respectively are	3
	connected in parallel as shown. Deduce the expressions for the equivalent emf and	
	equivalent internal resistance of a cell which can replace the combination between the points	
	${\bf A}$ and ${\bf B}$.	
	E ₁ ,F ₁	
	ϵ_{2},r_{2}	
11.	Two parallel plate capacitors \mathbf{X} and \mathbf{Y} have the same area of plates and same separation	3
	between them. X has air between the plates while Y contains a dielectric medium of $\varepsilon_r = 4$	
	(i) Calculate the capacitance of each capacitor if equivalent capacitance of the combination is	
	4 microfarad.	
	(ii) Calculate the potential difference between plate X and Y.	