CLASS:	INDIAN SCHOOL MUSCAT SECOND PERIODIC ASSESSMENT	SUBJECT: PHYSICS
	SET - C	
Q.NO.	VALUE POINTS	SPLIT UP MARKS
1.	Definition of the term mobility. SI unit is m ² /V-s	1/2 ,1/2
2.	Definition of dielectric strength of a dielectric	1
3.	(i) Cu (ii) Si	1
4.	Capacitance decreases Using $U = q^2/2C$ So stored energy in capacitor increases	1
5.	Definition of capacitance, No unit	1/2 ,1/2
6.	$I_{X} = I_{Y}$ $n_{x} eAv_{x} = n_{Y} eAv_{y}$	1
	$v_{x/}v_y = 1/2$	1
7.	Derivation of $C = K \epsilon_0 A/d$ Diagram Derivation	1/2 11/2
8.	$ \begin{aligned} &Using \\ &V = E_{eq} - Ir_{eq} \end{aligned} $	
	$E_{eq} = 6V$, emf of each cell = $2V$	1
	$r_{eq} = 6\Omega$, internal resistance of each cell = 2Ω	1
9.	Derivation of E_{eq} and r_{eq} in parallel combination of cells	2,1
10.	$C_x = 5 \mu F$ and $C_y = 20 \mu F$	2
	$V_x = 12 \text{ V}$ and $V_y = 3 \text{ V}$	1
11.	Derivation of $v_d = eV\tau/ml$	3