CLASS:	INDIAN SCHOOL MUSCAT SECOND PERIODIC ASSESSMENT	SUBJECT: PHYSICS
	SET - B	
Q.NO.	VALUE POINTS	SPLIT UP MARKS
1.	Capacitance decreases Using $U = \frac{1}{2} CV^2$	1/2 ,1/2
	So stored energy in capacitor decreases	
2.	Definition electrical conductance of a conductor and its SI unit.	1/2 ,1/2
3.	In Si, the resistivity increases In Cu, the resistivity decreases	1/2 ,1/2
4.	Definition of capacitance, No unit	1
5.	Definition of dielectric strength of a dielectric	1
6.	derivation of $U = \frac{1}{2} C V^2$ diagram derivation	1/2 11/2
7.		
	$E_{eq} = 6V$, emf of each cell = $2V$	1
	$r_{eq} = 6\Omega$, internal resistance of each cell = 2Ω	1
8.	$\begin{split} I_X &= I_Y \\ n_x \ eAv_x \ &= n_Y \ eAv_y \end{split}$	1
	$\mathbf{v}_{\mathbf{x}/}\mathbf{v}_{\mathbf{y}} = 1/2$	1
9.	Derivation of $v_d = eV\tau/ml$	3
10.	Derivation of E_{eq} and r_{eq} in parallel combination of cells	2,1
11.	$C_x = 5 \mu F$ and $C_y = 20 \mu F$	2
	$V_x = 12 \text{ V}$ and $V_y = 3 \text{ V}$	1