

INDIAN SCHOOL MUSCAT FIRST PERIODIC ASSESSMENT

PHYSICS

CLASS: XII 11.04.2019 Sub. Code: 042

Time Allotted: 50 mts

Max. Marks: 20

GENERAL INSTRUCTIONS:

- All questions are compulsory.
- There are 11 questions in all.
- Question no 1 to 5 carry one mark each.
- Question no 6 to 18 carry two marks each.
- Question no 9 to 11 carry three marks each.

$\frac{1}{4\pi\varepsilon_0}$	$\varepsilon_0 = 9 \times 10^9 Nm^2 C^{-2} N$ $\varepsilon_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$	
1.	Define electric dipole moment. What is its SI unit?	1
2.	Why do the electric field lines never cross each other?	1
3.	Name the physical quantity whose S.I. unit is JC ⁻¹ . Is it a scalar or a vector quantity?	1
4.	A hollow metal sphere of radius 5 cm is charged such that the potential on its surface is	1
	10V. What is the potential at the centre of the sphere?	
5.	What is the work done in moving a test charge q through a distance of 1 cm along the	1
	equatorial axis of an electric dipole?	
6.	Derive an expression for electric field at a point on the equatorial plane of an electric dipole	2
	of length 2a.	
7.	The sum of two point charges is 7μ C. They repel each other with a force of 1N when kept	2
	30 cm apart in free space. Calculate the value of each charge.	
8.	Two point charges q and -2q are kept d distance apart. Find the location of the point relative	2
	to charge q at which potential due to this system of charges is zero.	2
9.	(i) A point charge (+Q) is kept in the vicinity of uncharged conducting plate. Sketch electric	3
	field lines between the charge and the plate.	
	(ii) Two infinitely large plane thin parallel sheets having surface charge densities σ_1 and σ_2	
	$(\sigma_1 > \sigma_2)$ are shown in the figure. Write the magnitudes and directions of the net fields in	
	the regions marked II and III.	

- 10. An electric dipole of dipole moment \vec{p} is placed in uniform electric field \vec{E} . Obtain the expression for the torque $\vec{\tau}$ experienced by the dipole. Identify two pairs of perpendicular vectors in the expression.

3

3

- 11. (i) Why the potential inside a hollow spherical charged conductor is constant and has the same value as on its surface?
 - (ii) Draw three equipotential surfaces corresponding to a field that uniformly increases in magnitude but remains constant along **Z** direction. How are these surfaces different from that of a constant electric field along **Z** direction?

End of the Question Paper

INDIAN SCHOOL MUSCAT FIRST PERIODIC ASSESSMENT

PHYSICS

CLASS: XII 11.04.2019 Sub. Code: 042

Time Allotted: 50 mts

Max. Marks: 20

GENERAL INSTRUCTIONS:

- All questions are compulsory.
- There are 11 questions in all.
- Question no 1 to 5 carry one mark each.
- Question no 6 to 18 carry two marks each.
- Question no 9 to 11 carry three marks each.

4	$\frac{1}{\pi \varepsilon_0} = 9 \times 10^9 Nm^2 C^{-2} N \qquad \varepsilon_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$	
1.		1
2.	An electrostatic field line cannot be discontinuous. Why?	1
3.	Define electric potential. Is it a scalar or a vector quantity?	1
4.	What is the work done in moving a test charge q through a distance of 1 cm along the	1
	equatorial axis of an electric dipole?	
5.	A hollow metal sphere of radius 5 cm is charged such that the potential on its surface is 10V.	1
	What is the potential at the centre of the sphere?	
6.	The sum of two point charges is $7\mu C$. They repel each other with a force of $1N$ when kept 30	2
	cm apart in free space. Calculate the value of each charge.	
7	. Two point charges q and -2q are kept d distance apart. Find the location of the point relative	2
	to charge q at which potential due to this system of charges is zero.	
8	. Derive an expression for electric field at a point distant r from the centre of dipole on the	2
	axial line of an electric dipole of length 2a.	
9	. (i) Why the potential inside a hollow spherical charged conductor is constant and has the	3
	same value as on its surface?	
	(ii) Draw three equipotential surfaces corresponding to a field that uniformly increases in	
	magnitude but remains constant along Z- direction. How are these surfaces different from	
	that of a constant electric field along Z- direction?	
1	0. (i) A point charge (+Q) is kept in the vicinity of uncharged conducting plate. Sketch electric	3

field lines between the charge and the plate.

(ii) Two infinitely large plane thin parallel sheets having surface charge densities σ_1 and σ_2 ($\sigma_1 > \sigma_2$) are shown in the figure. Write the magnitudes and directions of the net fields in the regions marked II and III.

11. An electric dipole of dipole moment \vec{p} is placed in uniform electric field \vec{E} . Obtain the expression for the torque $\vec{\tau}$ experienced by the dipole. Identify two pairs of perpendicular vectors in the expression.

End of the Question Paper

3

INDIAN SCHOOL MUSCAT FIRST PERIODIC ASSESSMENT

PHYSICS

CLASS: XII

11.04.2019

Sub. Code: 042

Time Allotted: 50 mts

Max. Marks: 20

GENERAL INSTRUCTIONS:

- All questions are compulsory.
- There are 11 questions in all.
- Question no 1 to 5 carry one mark each.
- Question no 6 to 18 carry two marks each.
- Question no 9 to 11 carry three marks each.

$$\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 Nm^2 C^{-2} N \qquad \varepsilon_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$$

- Name the physical quantity whose S.I. unit is JC⁻¹. Is it a scalar or a vector quantity?
 What is the work done in moving a test charge q through a distance of 1 cm along the equatorial axis of an electric dipole?
- 3. A hollow metal sphere of radius 5 cm is charged such that the potential on its surface is 10V.

 What is the potential at the centre of the sphere?
- 4. Define electric dipole moment. What is its SI unit?
- 5. Why do the electric field lines never cross each other?
- 6. Derive an expression for electric field at a point on the equatorial plane of an electric dipole 2 of length 2a.
- 7. Two point charges q and -2q are kept d distance apart. Find the location of the point relative 2 to charge q at which potential due to this system of charges is zero.
- 8. The sum of two point charges is 7μ C. They repel each other with a force of 1N when kept 30 cm apart in free space. Calculate the value of each charge.
- 9. (i) A point charge (+Q) is kept in the vicinity of uncharged conducting plate. Sketch electric 3 field lines between the charge and the plate.
 - (ii) Two infinitely large plane thin parallel sheets having surface charge densities σ_1 and σ_2 ($\sigma_1 > \sigma_2$) are shown in the figure. Write the magnitudes and directions of the net fields in the regions marked II and III.

10. An electric dipole of dipole moment \vec{p} is placed in uniform electric field \vec{E} . Obtain the expression for the torque $\vec{\tau}$ experienced by the dipole. Identify two pairs of perpendicular vectors in the expression.

3

11. (i) Why the potential inside a hollow spherical charged conductor is constant and has the same value as on its surface?

3

(ii) Draw three equipotential surfaces corresponding to a field that uniformly increases in magnitude but remains constant along **Z**- direction. How are these surfaces different from that of a constant electric field along **Z**- direction?

End of the Question Paper