INDIAN SCHOOL MUSCAT

FIRST PRE-BOARD EXAMINATION

JANUARY 2020

SET C

CLASS XII

Marking Scheme – PHYSICS [THEORY]

Q.NO.	Answers	Marks (with
		split up)
1.	(d)	1
2.	(c)	1
3.	(d)	1
4.	(b)	1
5.	(c)	1
6.	(b)	1
7.	(b)	1
8.	(d)	1
9.	(a)	1
10.	(c)	1
11.	Angle of dip	1
12.	Radial	1
13.	Paramagnetic substance	1
14.	Negative	1
	OR	
	Scattering	
15.	Becquerel	1
16.	Statement of Ampere's circuital Law	1
17.	By using laminated core	1
18.	Decreases	1
	OR	
	Definition of barrier potential	

19.	Neutrinos are mass less, have no charge and do not interact with matter	1
20.	$P = V_{rms} x I_{rms} x \cos \pi/2 = 0$	1
21.	As the both 3 uF capacitors are connected in parallel, so net capacitance between branch EH = $3+3=6$ µF Similarly, capacitance 2 uF and 1 uF at the corner B are also connected in parallel, so the net capacitance of branch FG = $2+1=3$ µF	
	If reconstruct the given figure according to the above calculations, we can see that 6 μF capacitor and 3 μF capacitor at connected in series and another 2 μF capacitor is connected in parallel with both of them.	
	$ \begin{array}{c c} E & F \\ \hline 6 \mu\text{F} & 3 \mu\text{F} \\ D & H & G \end{array} $ $ \begin{array}{c c} C & C \\ \hline 2 \mu\text{F} & G \end{array} $	
	1	
	Hence net capacitance Between D and C = $2+3\times63+6=2+2=4~\mu F$	
	The total capacitance of the circuit, Cnet = 4 μF Total voltage applied, V = 100 V	1
	Energy stored in the network = 12CnetV2=12×4×10-6×(100)2=0.02 J	1
22.	Principle of potentiometer (i) By increasing the total length of wire, keeping terminal voltage constant (ii) By connecting a suitable extra resistance R in series with potentiometer. So, less amount of the current flows through the potentiometer wire.	1 ½ ½
23.	$r_{\alpha}/r_{p} = 2/1$ with calculation	2
	OR	
	Paramagnetic material	1
	Diagram of magnetic lines through Paramagnetic material	1
24.	(a) State the principle on which the working of an optical fibre is based.	1
	(b) What are the necessary conditions for this phenomenon to occur?	1/2 1/2
25.	Statement of Brewster's law Since refractive index is different for different colour, Brewster's angle is different for different colours.	1
26.	(a) Saturation or short range nature of nuclear forces.	1
	(b) To show that the density of nucleus over wide range of nuclei is constant independent of mass number A .	1
	OR	

	$\lambda_{\min} = 8.18 \times 10^{-7} \text{m}$ after calculation	
	IR region	11/2
	IK legion	1/2
27.	Energy band diagram of n-type and p-type semiconductor with marking of donor and acceptor level	1/2 1/2
		1/2 1/2
28.	(i) Gauss's Law in electrostatics states that the total electric flux through a closed surface enclosing a charge is equal to $\frac{1}{\varepsilon_0}$ times the magnitude of that charge. $\phi = \oint \overrightarrow{E} \cdot \overrightarrow{dS} = \frac{q}{\varepsilon_0}$ (ii) Net flux $\phi = \phi_1 + \phi_2$ where $\phi_1 = \overrightarrow{E} \cdot \overrightarrow{dS}$	1/2
	$= 2aC dS \cos 0^{\circ} = 2 aC \times a^{2} = 2a^{3}C$ $\phi_{2} = aC \times a^{2} \cos 180^{\circ} = -a^{3}C$ $\phi = 2a^{3}C + (-a^{3}C) = a^{3}C \operatorname{Nm}^{2} C^{-1}$ (iii) Net charge $(q) = \varepsilon_{0} \times \phi = a^{3}C \varepsilon_{0}$ coulomb $q = a^{3}C \varepsilon_{0} \text{ coulomb}.$	2
20	1	
29.	Moving coil galvanometer:	1/2
	Diagram Principle	1/2
	working	11/2
	cylindrical soft iron core inside the coil of a galvanometer makes the magnetic field stronger	1/2
30.	In RC circuit:	
	Phasor diagram	1
	(a) impedence	1
	(b) Phase angle	1
	OR	
	Explanation of mutual inductance	1
	Expression of mutual inductance for two concentric circular coils	2
31.	(a) Microwaves	1
	Production: Klystron/ Magnetron/Gunn diode	1
	(b) IR	_
	Production: Hot bodies/ Vibrations of atoms and molecule	1
	(c) X –rays	
	Production: secondary emission of radiation when high energy electrons strike on high	
	atomic no metal	
22	v infinite.	1/
32.	v _e = infinity	1/2
	so image formed by objective lens at focus of eye piece	
	$L = v_0 + f_e$	
	using lens formula for objective lens	
	$v_0 = 2.5 \text{ cm}$	2
	L = 2.5 + 5 = 7.5 cm	1/2

33.	(a) Zener diode-	
	Circuit	
	Working	2
	(b) Two advantages of using LEDs over conventional incandescent lamps.	1/2 1/2
34.	Part AB represents repulsive force and Part BCD represents attractive force. A	1
	 Nuclear forces are attractive and stronger, then electrostatic force. 	1
	(2) Nuclear forces are charge-independent.	
35.	(a) Derivation of Einstein's photoelectric equation on photon picture	2
	Two features of photoelectric effect which cannot be explained by wave theory.	1/2 1/2
	(b) A proton and α- particle have the same de-Broglie wavelength. Determine the ratio of their	
	accelerating potentials.	
	$V = h^2/2mq\lambda^2$	1/
	$V_p / V_\alpha = 4 \text{m x } 2 \text{q} / \text{mq} = 8 / 1$	$\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}$
	OR	1/2
	Derivation of energy of revolving electron in orbit $E_n = - Ze^2/8\pi\epsilon_0 r_n$	
	Using Bohr postulate final expression of energy $E_n = -mZ^2 e^4/8\epsilon_0^2 h^2 n^2$ then after substituting Rydberg constant	3
	then after substituting Rydberg constant $E_n = -Rch/n^2$ For Balmer series	
	$1/\lambda = Rc (1/n_f - 1/n_i)$ where $n_f = 2$ and $n_i = 3,4,5,$ infinity	2
36.	Energy level diagram	<u> </u>
50.		
	(a) Electric E due to a dipole on the axial line.	1/2
	Diagram Derivation	11/2
	Denvanon	1

	(c) Diagrammatically represent the position of the dipole in stable and unstable equilibrium	
	stable equilibrium $\theta = 0^0$ and $\tau = 0$ along with diagram	1/ 1/
	unstable equilibrium $\theta = 180^{\circ}$ and $\tau = 0$ along with diagram	1/2 1/2 1/2 1/2
	OR	, - , -
	(a) Definition of the drift velocity and relaxation time.	1/2 1/2
	(b) On the basis of electron drift, derivation for resistivity in terms of number density of free	7272
	electrons and relaxation time.	3
	(c) Constantan and manganin are used for making standard resistors because alloys have high	
	resistivity negligible temperature coefficient resistance	1
37.		
	a) Deduce the expression for the refractive index of glass of prism	1/
	Diagram	1/2
	Derivation	21/2
	(b) Ray diagram showing the formation of image by a reflecting type telescope.	2
	OR	
	(a) Young's double slit experiment	
	Diagram	1/2
	Derivation of fringe width	2½
	(b) Any two characteristic features which distinguish between interference and diffraction phenomena.	1,1
	рненошена.	7