INDIAN SCHOOL MUSCAT

FIRST PRE-BOARD EXAMINATION

JANUARY 2020

SET B

CLASS XII

Marking Scheme – PHYSICS [THEORY]

Q.NO.	Answers	Marks
		(with
1.	(c)	split up)
2.	(b)	1
3.	(C)	1
4.	(d)	1
5.	(c)	1
6.	(d)	1
7.	(a)	1
8.	(d)	1
9.	(b)	1
10.	(b)	1
11.	Becquerel	1
12.	Paramagnetic substance	1
13.	Radial	1
14.	Angle of dip	1
15.	Negative OR Scattering	1
16.	By using laminated core	1
17.	Neutrinos are mass less, have no charge and do not interact with matter	1
18.	$P = V_{rms} x I_{rms} x \cos \pi/2 = 0$	1
19.	Statement Biot-Savart law.	1
-	·	

20.	Increases	1
	OR	
	More absorption coefficient	
21.	Wore absorption coefficient	
	Statement of Brewster's law Since refractive index is different for different colour, Brewster's angle is different for different colours.	1 1
22.	(a) Saturation or short range nature of nuclear forces.	1
	(b) To show that the density of nucleus over wide range of nuclei is constant independent of	1
	mass number A .	
	OR	
	$\lambda_{\min} = 8.18 \times 10^{-7} \text{m}$ after calculation	11/
	IR region	1½ 1/2
23.	Two points of difference between intrinsic and extrinsic semiconductors.	1,1
24.	As the both 3 uF capacitors are connected in parallel, so net capacitance between branch EH = $3+3=6 \mu F$ Similarly, capacitance 2 uF and 1 uF at the corner B are also connected in parallel, so the net capacitance of branch FG = $2+1=3 \mu F$ If reconstruct the given figure according to the above calculations, we can see that $6 \mu F$ capacitor and $3 \mu F$ capacitor are connected in series and another 2 uF capacitor is connected in parallel with both of them. $ \frac{E}{\mu F} = \frac{F}{\mu F} = $	1
25.	Balance conditions in a Wheatstone bridge by using Kirchhoff's rules	1
	Circuit Condition	1
26.	$r_{\alpha}/r_{p} = \frac{1}{2}$ with calculation	2
	OR Paramagnetic material Diagram of magnetic lines through Paramagnetic materia	1 1

27.	(a) State the principle on which the working of an optical fibre is based.	1/2 1/2
	(b) What are the necessary conditions for this phenomenon to occur?	1/2 1/2
28.	Moving coil galvanometer: Diagram Principle working cylindrical soft iron core inside the coil of a galvanometer makes the magnetic field stronger	1/2 1/2 11/2
29.	$v_e = infinity$ so image formed by objective lens at focus of eye piece $L = v_0 + f_e$ using lens formula for objective lens	1/2
	$v_0 = 2.5 \text{ cm}$ L = 2.5 + 5 = 7.5 cm	2 1/2
30.	a) Zener diode- Circuit Working (b) Two advantages of using LEDs over conventional incandescent lamps.	1 1 1/ ₂ 1/ ₂
31.	Part AB represents repulsive force and Part BCD represents attractive force. A	1 1
	Conclusions: (1) Nuclear forces are attractive and stronger, then electrostatic force. (2) Nuclear forces are charge-independent.	1/2 1/2

	phenomena.	
36.	(a) Derivation of Einstein's photoelectric equation on photon picture	2
	Two features of photoelectric effect which cannot be explained by wave theory.	1/ 1/
	(b) A proton and α - particle have the same de-Broglie wavelength. Determine the ratio of their	1/2 1/2
	accelerating potentials.	
	$V = h^2/2mq\lambda^2$	1/
	$V_p/V_\alpha = 4m \times 2q/mq = 8/1$	1½ 1½
	OR	
	Derivation of energy of revolving electron in orbit $E_n = - Ze^2/8\pi\epsilon_0 r_n$	3
	Using Bohr postulate final expression of energy $E_n = -mZ^2 e^4/8\epsilon_0^2 h^2 n^2$	
	then after substituting Rydberg constant $E_n = -Rch/n^2$	
	For Balmer series	
	$1/\lambda = Rc (1/n_f - 1/n_i)$ where $n_f = 2$ and $n_i = 3,4,5,$ infinity Energy level diagram	2
37.	(a) Electric E due to a dipole on the axial line. Diagram	1/2
	Derivation	21/2
	 (b) Graph of E versus r (c) Diagrammatically represent the position of the dipole in stable and unstable equilibrium 	1
	stable equilibrium $\theta = 0^0$ and $\tau = 0$ along with diagram	1/2 1/2
	unstable equilibrium $\theta = 180^{\circ}$ and $\tau = 0$ along with diagram	1/2 1/2
	OR	
	(a) Definition of the drift velocity and relaxation time.	
	(a) Definition of the drift velocity and relaxation time.(b) On the basis of electron drift, derivation for resistivity in terms of number density of free	1/2 1/2
	(b) On the basis of electron drift, derivation for resistivity in terms of number density of free	
		¹ / ₂ ¹ / ₂ 3