INDIAN SCHOOL MUSCAT

FIRST PRE-BOARD EXAMINATION

JANUARY 2020

SET A

CLASS XII

Marking Scheme – PHYSICS [THEORY]

Q.NO.	Answers	Marks (with split up)
1.	(c)	1
2.	(d)	1
3.	(C)	1
4.	(b)	1
5.	(c)	1
6.	(b)	1
7.	(b)	1
8.	(d)	1
9.	(a)	1
10.	(d)	1
11.	Paramagnetic substance	1
12.	Radial	1
13.	Angle of dip	1
14.	Negative OR Scattering	1
15.	Becquerel	1
16.	Neutrinos are mass less, have no charge and do not interact with matter	1
17.	By using laminated core	1
18.	Decreases OR	1
	Definition of barrier potential	

19.	Statement of Ampere's circuital Law	1
	OR Statement Biot-Savart law.	
20.	$P = V_{rms} x I_{rms} x cos \pi/2 = 0$	1
20.	$\mathbf{r} = \mathbf{v}_{\text{rms}} \mathbf{x} \mathbf{I}_{\text{rms}} \mathbf{x} \cos \pi / 2 = 0$	1
21.	As the both 3 uF capacitors are connected in parallel, so net capacitance between branch EH = $3+3=6 \mu F$ Similarly, capacitance 2 uF and 1 uF at the corner B are also connected in parallel, so the net capacitance of branch FG = $2+1=3 \mu F$	
	If reconstruct the given figure according to the above calculations, we can see that 6 μF capacitor and 3 μF capacitor as connected in series and another 2 μF capacitor is connected in parallel with both of them.	
	$ \begin{array}{c c} E & F \\ \hline 6 \mu F & 3 \mu F \end{array} $ $ \begin{array}{c c} D & G & C \end{array} $	
	Hence net capacitance Between D and C = 2+3×63+6=2+2=4 µF	
	The total capacitance of the circuit, Cnet = 4 μF Total voltage applied, V = 100 V	1
	Energy stored in the network = 12CnetV2=12×4×10-6×(100)2=0.02 J	1
22.	Principle of potentiometer (i) By increasing the total length of wire, keeping terminal voltage constant (ii) By connecting a suitable extra resistance R in series with potentiometer. So, less amount of the current flows through the potentiometer wire.	1 1/2 1/2
23.	$r_{\alpha}/r_p = 2/1$ with calculation	2
	OR Paramagnetic material Diagram of magnetic lines through Paramagnetic material	1
24.	(a) two conditions of TIR (b) n = 1/sini _c	1 1
25.	Statement of Brewster's law Since refractive index is different for different colour, Brewster's angle is different for different colours.	1
26.	(a) Saturation or short range nature of nuclear forces.	1
	(b) To show that the density of nucleus over wide range of nuclei is constant independent of mass number A.	1

	OR	
	$\lambda_{min} = 8.18 \times 10^{-7} \text{m}$ after calculation	
	IR region	1½
		1/2
27.	Energy band diagram of n-type and p-type semiconductor with marking of donor and	1/2 1/2
	acceptor level	1/ 1/
28.	(i) Gauss's Law in electrostatics states that the total electric flux through a closed surface	1/2 1/2
20.	enclosing a charge is equal to — times the magnitude of that charge.	72
	ϵ_0	
	$\phi = \oint \overrightarrow{E} \cdot \overrightarrow{dS} = \frac{q}{\varepsilon_0}$	
	σ ε ₀	
	(ii) Net flux $\phi = \phi_1 + \phi_2$	
	where $\phi_1 = \overrightarrow{E} \cdot \overrightarrow{dS}$	
	$= 2aC dS \cos 0^{\circ} = 2aC \times a^{2} = 2a^{3}C$	
	$\phi_2 = aC \times a^2 \cos 180^\circ = -a^3 C$	2
	$\phi = 2a^3C + (-a^3C) = a^3C \text{ Nm}^2 \text{ C}^{-1}$	_
	(iii) Net charge $(q) = \varepsilon_0 \times \phi = a^3 C \varepsilon_0$ coulomb	
	$q = a^3 C \epsilon_0$ coulomb.	1/2
29.	Moving coil galvanometer:	1/2
29.	Diagram	1/2
	Principle	11/2
	working	
	cylindrical soft iron core inside the coil of a galvanometer makes the magnetic field stronger OR	1/2
	When electron revolves around a nucleus, it creates circular current around it. In this way,	
	it is equivalent to a current carrying coil. So, it behaves as a tiny magnetic dipole	1/2
	Derivation of $\mu = -(e/2m_e) L$	2
	Negative sign indicates μ is opposite to L	1/2
		/2
30.	In RC circuit:	
50.	Phasor diagram	1
	(a) impedence	1
	(b) Phase angle	1
	OR	
	Explanation of mutual inductance	1
	Expression of mutual inductance for two concentric circular coils	2
31.	(a) X-rays	1
J1.	(b) secondary emission of radiation when high energy electrons strike on high atomic no	1
	metal	
	(c) wavelength from 1×10^{-11} m to 1×10^{-8} m	1
32.	$v_e = infinity$	1/2
	so image formed by objective lens at focus of eye piece $I = v_0 + f$	
	$L = v_0 + f_e$	

	using lens formula for objective lens $v_0 = 2.5 \text{ cm}$ $L = 2.5 + 5 = 7.5 \text{ cm}$	2 1/2
33.	(a) Zener diode- Circuit Working (b) Two advantages of using LEDs over conventional incandescent lamps.	1 2 1/2 1/2
34.	Part AB represents repulsive force and Part BCD represents attractive force.	1
	+100 Repulsive D Altractive T (fm)	
	Conclusions:	1
	 Nuclear forces are attractive and stronger, then electrostatic force. Nuclear forces are charge-independent. 	1
35.	 (a) Electric E due to a dipole on the axial line. Diagram Derivation (b) Graph of E versus r (c) Diagrammatically represent the position of the dipole in stable and unstable equilibrium 	1/2 11/2 1
	stable equilibrium $\theta = 0^0$ and $\tau = 0$ along with diagram	1/2 1/2
	unstable equilibrium $\theta = 180^{\circ}$ and $\tau = 0$ along with diagram OR	1/2 1/2
	(a) Definition of the drift velocity and relaxation time.	1/2 1/2
	(b) On the basis of electron drift, derivation for resistivity in terms of number density of free	
	electrons and relaxation time.	3
	(c) Constantan and manganin are used for making standard resistors because alloys have high resistivity negligible temperature coefficient resistance	1
36.	(a) Deduce the expression for the refractive index of glass of prism	
	Diagram Derivation	1 2

	(b) Ray diagram showing the formation of image by a reflecting type telescope.	
		2
	OR	
	(a) Young's double slit experiment	1/2
	Diagram Derivation of fringe width	21/2
	(b) Any two characteristic features which distinguish between interference and diffraction	1,1
	phenomena.	
37.	(a) Derivation of Einstein's photoelectric equation on photon picture	2
	Two features of photoelectric effect which cannot be explained by wave theory.	1,,,,
	(b) A proton and α - particle have the same de-Broglie wavelength. Determine the ratio of their	1/2 1/2
	accelerating potentials.	
	$V = h^2/2mq\lambda^2$	1/2
	$V_p/V_\alpha = 4m \times 2q/mq = 8/1$	11/2
	OR	
	Derivation of energy of revolving electron in orbit	
	$E_{n} = -Ze^{2}/8\pi\epsilon_{0}r_{n}$	3
	Using Bohr postulate final expression of energy $E_n = - mZ^2 e^4/8\epsilon_0^2 h^2 n^2$	
	then after substituting Rydberg constant	
	$E_n = -Rch/n^2$	
	For Balmer series $\frac{1}{2} = \text{Pa}\left(\frac{1}{2} + \frac{1}{2}\right) \text{where } n = 2 \text{ and } n = 2 \text{ 4.5} \text{infinity}$	
	$1/\lambda = Rc (1/n_f - 1/n_i)$ where $n_f = 2$ and $n_i = 3,4,5,$ infinity Energy level diagram	2
	Life System Control of the State of the Stat	