

INDIAN SCHOOL MUSCAT SECOND PERIODIC ASSESSMENT

MATHEMATICS

CLASS: XII

Sub. Code: 041

Time Allotted: 50 mts

14.05.2019

Max. Marks: 20

GENERAL INSTRUCTIONS:

- 1. All questions are compulsory.
- 2. The question paper consists of 7 questions divided into two sections A and B.
- 3. Section A comprises of 4 questions of 2 marks each and Section B comprises of 3 questions of 4 marks each.

SECTION: A

- 1. If $x = a\cos\theta$ and $y = b\sin\theta$, find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{6}$.
- 2. Differentiate the function $\tan^{-1} \frac{\sqrt{1+x^2}-1}{x}$ with respect to x.
- 3. Prove that the greatest integer function [x] is not differentiable at x = 1.
- 4. Show that the function defined by $f(x) = \sin(x^2)$ is a continuous function 2

SECTION: B

5. Find the values of a and b such that the function f defined by $f(x) = \begin{cases} 5, if x \le 2 \\ ax + b, if 2 < x < 10 \\ 21, if x \ge 10 \end{cases}$

is a continuous function.

- 6. Differentiate the function $x^{\sin x} + (\sin x)^{\cos x}$ with respect to x.
- 7. If $y = (\sin^{-1} x)^2$, show that $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} = 2$.

End of the Question Paper

2

INDIAN SCHOOL MUSCAT SECOND PERIODIC ASSESSMENT

MATHEMATICS

CLASS:XII

Sub. Code: 041

Time Allotted: 50 mts

14.05.2019

Max. Marks: 20

GENERAL INSTRUCTIONS:

- 1. All questions are compulsory.
- 2. The question paper consists of 7 questions divided into two sections A and B.
- 3. Section A comprises of 4 questions of 2 marks each and Section B comprises of 3 questions of 4 marks each.

SECTION: A

- 1. Show that the function defined by $f(x) = \cos(x^2)$ is a continuous function.
- 2. Differentiate the function $\tan^{-1} \frac{\sqrt{1+x^2}+1}{x}$ with respect to x.
- 3. Prove that the greatest integer function [x] is not differentiable at x = 1.
- 4. If $x = a(\theta + \sin \theta)$ and $y = a(1 \cos \theta)$, find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{3}$.

SECTION: B

- 5. Differentiate the function $x^{\sin x} + (\sin x)^{\cos x}$ with respect to x.
- 6. If $y = (\sin^{-1} x)^2$, show that $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} = 2$.
- 7. Find the values of a and b such that the function f defined by $f(x) = \begin{cases} 5, if x \le 2 \\ ax + b, if 2 < x < 10 \\ 21, if x \ge 10 \end{cases}$

is a continuous function.

End of the Question Paper

INDIAN SCHOOL MUSCAT SECOND PERIODIC ASSESSMENT

MATHEMATICS

CLASS:XII

Sub. Code: 041

Time Allotted: 50 mts

14.05.2019

Max. Marks: 20

GENERAL INSTRUCTIONS:

1. All questions are compulsory.

- 2. The question paper consists of 7 questions divided into two sections A and B.
- 3. Section A comprises of 4 questions of 2 marks each and Section B comprises of 3 questions of 4 marks each.

SECTION: A

1. Differentiate the function $\tan^{-1} \frac{\sqrt{1+x^2}-1}{x}$ with respect to x.

2. If $x = a(\theta + \sin \theta)$ and $y = a(1 - \cos \theta)$, find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{3}$

- 3. Show that the function defined by $f(x) = \cos(x^2)$ is a continuous function.
- 4. Prove that the greatest integer function [x] is not differentiable at x = 1.

SECTION: B

5. If $y = (\sin^{-1} x)^2$ show that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 2$.

6. Find the values of a and b such that the function f defined by $f(x) = \begin{cases} 5, if x \le 2 \\ ax + b, if 2 < x < 10 \\ 21, if x \ge 10 \end{cases}$

is a continuous function.

7. Differentiate the function $x^{\sin x} + (\sin x)^{\cos x}$ with respect to x.

End of the Question Paper