

INDIAN SCHOOL MUSCAT FIRST PERIODIC ASSESSMENT

MATHEMATICS

CLASS: XII

Sub. Code: 041

Time Allotted: 50 min.

08.04.2019

Max. Marks: 20

GENERAL INSTRUCTIONS:

All questions are compulsory.

- Questions 1 to 4 carry TWO marks each.
- Questions 5 to 7 carry FOUR marks each.

SECTION – A $(2 \times 4 = 8 \text{ marks})$

- 1. Find the value of $\tan^{-1}\left(\tan\frac{3\pi}{5}\right)$ 2 mks
- 2. Show that the function $f: N \to N$ given by f(x) = 2x, is one-one but not onto.
- Find gof and fog, if $f(x) = 8x^3$ and $g(x) = x^{\frac{1}{3}}$
- 4. Write $\cot^{-1}\left(\frac{1}{\sqrt{x^2-1}}\right)$, |x| > 1 in simplest form.

$SECTION - B (4 \times 3 = 12 \text{ marks})$

- 5. Let $f: N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to S$, 4 mks where S is the range of f, is invertible. Also find the inverse of f.
- 6. Show that the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$ given by 4 mks $R = \{(a, b) : |a b| \text{ is a multiple of } 4\}$ is an equivalence relation.
- 7. If $\tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$, find the value of x.

End of the Question Paper

INDIAN SCHOOL MUSCAT FIRST PERIODIC ASSESSMENT

MATHEMATICS

CLASS: XII

Sub. Code: 041

Time Allotted: 50min.

08.04.2019

Max. Marks: 20

GENERAL INSTRUCTIONS:

- All questions are compulsory.
- Questions 1 to 4 carry TWO marks each.
- Questions 5 to 7 carry FOUR marks each.

SECTION - A (2 x 4 = 8 marks)

Find gof and fog, if $f(x) = 8x^3$ and $g(x) = x^{\frac{1}{3}}$

2 mks

2. Write $\tan^{-1}\left(\frac{1}{\sqrt{x^2-1}}\right)$, |x| > 1 in simplest form.

2 mks

3. Find the value of $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$

2 mks

4. Show that the function $f: N \to N$ given by f(x) = 2x, is one-one but not onto.

2 mks

$SECTION - B (4 \times 3 = 12 \text{ marks})$

5. Show that the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$ given by

4 mks

 $R = \{(a, b): |a - b| \text{ is a multiple of } 4\}$ is an equivalence relation.

6. If $\tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$, find the value of x.

4 mks

7. Let $f: N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to S$,

4 mks

where S is the range of f, is invertible. Also find the inverse of f.

End of the Question Paper

INDIAN SCHOOL MUSCAT FIRST PERIODIC ASSESSMENT

MATHEMATICS

CLASS: XII

Sub. Code: 041

Time Allotted: 50min.

08.04.2019

Max. Marks: 20

GENERAL INSTRUCTIONS:

• All questions are compulsory.

- Questions 1 to 4 carry TWO marks each.
- Questions 5 to 7 carry FOUR marks each.

$SECTION - A (2 \times 4 = 8 \text{ marks})$

- 1. Write $\cot^{-1}\left(\frac{1}{\sqrt{x^2-1}}\right)$, |x| > 1 in simplest form.
- 2. Show that the function $f: N \to N$ given by f(x) = 2x, is one-one but not onto.
- 3. Find gof and fog, if $f(x) = 8x^3$ and $g(x) = x^{\frac{1}{3}}$
- 4. Find the value of $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ 2 mks

$SECTION - B (4 \times 3 = 12 \text{ marks})$

- 5. If $\tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$, find the value of x.
- 6. Consider $f: R_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible. 4 mks Also find the inverse of f.
- 7. Show that the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$ given by 4 mks $R = \{(a, b): |a b| \text{ is a multiple of } 4\}$ is an equivalence relation.

End of the Question Paper