Roll Number		

INDIAN SCHOOL MUSCAT FIRST PRE-BOARD EXAMINATION MATHEMATICS

CL	ASS:	XII

Subject Code: 041

Time Allotted: 3 Hrs.

1

1

1

1

1

02.01.2020

Max. Marks: 80

General	Instr	uctions:
---------	-------	----------

(i)	All the questions are compul	sory.
-----	------------------------------	-------

- (ii) The question paper consists of 36 questions divided into 4 sections A, B, C, and D.
- (iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
- (iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.

SECTION A

Q1 - Q10 are multiple choice type questions. Select the correct option: If a matrix A is both symmetric and skew symmetric then matrix A is

	(a) a scalar matrix	(b) any zero matrix
	(c) a zero matrix of order $n \times n$	(d) a rectangular matrix
2.	If A is a square matrix such that $A^2 = A$, then we matrix.	rite the value of $7A - (I + A)^3$, where I is an identity

(c) - A

3. The angle between the vectors $\hat{i} - \hat{j}$ and $\hat{j} - \hat{k}$ is

(a) $\frac{\pi}{a}$

1.

(b) $\frac{2\pi}{3}$

(b) A

 $(c)\frac{5\pi}{6}$

 $(d)\frac{-\pi}{3}$

4. If A and B are any two events such that P(A) + P(B) - P(A and B) = P(A), then

(a) P(B|A) = 1

(a) I

(b) P(A|B) = 1

(c) P(B|A) = 0

(d) P(A|B) = 0

5. The point which lies in the solution half plane of $2x + 3y \le 6$ is

(a) (5,7)

(b)(1,2)

(c) (2, 1)

(d)(-1,0)

(d) - I

6. If $\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$, then value of $\cos^{-1} x + \cos^{-1} y$ is

(a) $\frac{\pi}{2}$

(b) π

(c) $\frac{2\pi}{3}$

(d) 0

7	$\frac{7}{2}$ $\frac{1}{2}$ $\frac{17}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	1
7.	If $P(A \cap B) = \frac{7}{10}$ and $P(B) = \frac{17}{20}$, then $P(A B)$ equals (a) $\frac{14}{17}$ (b) $\frac{7}{17}$ (c) $\frac{17}{20}$ (d) $\frac{14}{17}$	•
8.	$\int_0^{\frac{\pi}{2}} \sqrt{1 + \sin 2x} dx \text{ is equal to}$	1
	(a) $2\sqrt{2}$ (b) $2(\sqrt{2}+1)$ (c) 2 (d) $2(\sqrt{2}-1)$	
9.	The reflection of the point (α, β, γ) in the xy- plane is (a) $(\alpha, \beta, 0)$ (b) $(0, 0, \gamma)$ (c) $(-\alpha, -\beta, \gamma)$ (d) $(\alpha, \beta, -\gamma)$.1
10.	The equation of the plane parallel to the plane $4x - 3y + 2z + 1 = 0$ and passing through the point	1
	(5, 1, -6) is (a) $4x - 3y + 2z - 5 = 0$ (b) $3x - 4y + 2z - 5 = 0$ (c) $3x - 4y + 2z + 5 = 0$ (d) $4x - 3y + 2z + 5 = 0$	
	(Q11 - Q15) Fill in the blanks:	
11.	Define a relation R in \mathbf{R} as aRb if $a \ge b$. R is not an equivalence relation because R is	1
·	For the function $f(x) = x^2$ defined from R_+ to R_+ , where R_+ is the set of all non – negative real numbers. What is f^{-1} ?	
12.	The set of points where the functions f given by $f(x) = x - 3 $ is differentiable is	1
13.	If $\begin{bmatrix} 2x + y & 4x \\ 5x - 7 & 4x \end{bmatrix} = \begin{bmatrix} 7 & 7y - 13 \\ y & x + 6 \end{bmatrix}$, then value of x is	1
14.	The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at which the area increases, when side is 10 cm is cm ² /s	. 1
15.	The direction cosines of Z-axis are	1
	OR The unit vector in the direction of the vector $2\hat{i} - \hat{j} + 3\hat{k}$ is	
	(Q16 - Q20) Answer the following questions:	
16.	Let A be a square matrix of order 3×3 and k a scalar, then find the value of $ kA $.	1
17.	Evaluate: $\int \frac{dx}{\sin^2 x \cos^2 x}$	1
18.	Evaluate: $\int_{0}^{\pi} \frac{1}{\sec x} dx$	1
19.	Evaluate: $\int_0^2 \frac{dx}{secx} dx$ Evaluate: $\int_a^{-a} (\sin^5 x) dx$	1
	and the control of t	

What is the order of the differential equation of all circles of given radius 5 units? 20.

1

2

2

2

4

4

What is the integrating factor of the differential equation $x \frac{dy}{dx} - 2y = e^{2x}$? <u>SECTION - B</u>

- Find the principal value of $\cos^{-1}\left(\cos\frac{7\pi}{6}\right) + \sin^{-1}\left(\sin\frac{5\pi}{6}\right)$ 2 21.
- 2 Find $\frac{dy}{dx}$, if $y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$, 0 < x < 122.

Differentiate $\log(\cos e^x)$ with respect to e^x .

- Find the value of c in Mean value theorem for the function $f(x) = x(x-2), x \in [1, 2]$ 23.
- Find the angle between the two planes 3x 6y + 2z = 7 and 2x + 2y 2z = 52 24.
- Find the vector and Cartesian equation of the line through the point (5, 2,-4) and which is parallel to 25. the vector $3\hat{\imath} + 2\hat{\jmath} - 8\hat{k}$.

Show that the points A $(-2\hat{\imath} + 3\hat{\jmath} + 5\hat{k})$, B $(\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$ and C $(7\hat{\imath} - \hat{k})$ are collinear.

A die is thrown twice and the sum of the numbers appearing is observed to be 6. What is the 26. conditional probability that the number 4 has appeared at least once?

SECTION - C

- Let T be the set of all triangles in a plane with R, a relation in T given by $R = \{(T1, T2): T1 \text{ is } T\}$ 27. similar to T2}. Show that R is an equivalence relation. Are the two right angled triangles with sides $T_1: 3, 4, 5 \text{ and } T_2: 1, 1, \sqrt{2} \text{ related? Justify.}$
- If $y = 3 \cos(\log x) + 4 \sin(\log x)$. Show that $x^2y_2 + xy_1 + y = 0$ 4 28. If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$ then prove that $\frac{dy}{dx} = -\frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$
- 29. Find the particular solution of differential equation $(1 + x^2)$ dy +2xy dx = cot x dx, given that 4
- = 1 when $x = \frac{\pi}{2}$. Evaluate: $\int \frac{6x+7}{\sqrt{(x-5)(x-4)}} dx$ 30.
- There are 2 boxes I and II .Box I contains 3 red and 6 black balls. Box II contains 5 red and 'n' black 31. balls. One of the two boxes, box I and box II is selected at random and a ball is drawn at random. The ball drawn is found to be red. If the probability that this red ball comes out from box II is $\frac{3}{5}$, find the value of 'n'.

OR

From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.

32. A dealer wishes to purchase a number of fans and sewing machines. He has only ₹ 5760 to invest and has space for at most 20 items. A fan costs him ₹ 360 and a sewing machine ₹ 240. His expectation is that he can sell a fan at a profit of ₹ 22 and a sewing machine at a profit of ₹ 18. Assuming that he can sell all the items that he can buy, how should he invest his money in order to maximize the profit? Formulate this as a linear programming problem and solve it graphically.

4

6

6

6

6

<u>SECTION D</u>

33. If $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix}$. Find A^{-1} , hence solve the system of equations, x + 2z = 7, 3x + y + z = 12 and x + y + z = 6

OR

Find the inverse of the following matrix using column operations

$$A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

- 34. Using integration, find the area of \triangle ABC ,whose vertices are A(2,5) ,B(4,7) and C(6,2)
- 35. A given quantity of metal is to be cast into a solid half circular cylinder with a rectangular base and semi-circular ends. Show that in order that total surface area is minimum, the ratio of length of cylinder to the diameter of semi-circular ends is $\pi : \pi + 2$.

OR

Find the equation of the normal at a point on the curve $x^2 = 4y$ which passes through the point (1, 2). Also find the equation of the corresponding tangent.

36. Show that the lines with vector equations $\vec{r} = \hat{\imath} + \hat{\jmath} + \hat{k} + \mu(\hat{\imath} - \hat{\jmath} + \hat{k})$ and $\vec{r} = 4\hat{\jmath} + 2\hat{k} + \beta(2\hat{\imath} - \hat{\jmath} + 3\hat{k})$ are coplanar. Also find the equation of the plane containing the lines.

End of the Question Paper

INDIAN SCHOOL MUSCAT FIRST PRE-BOARD EXAMINATION MATHEMATICS

CLASS: XII

Subject Code: 041

Time Allotted: 3 Hrs.

02.01.2020

Max. Marks: 80

(i) All the questions are compulsory.

- (ii) The question paper consists of 36 questions divided into 4 sections A, B, C, and D.
- (iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
- (iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.

SECTION A

	Q1 – Q10 are multi	ple choice type ques	stions. Select the co	rrect option	l .	
1.	The angle between the (a) $\frac{\pi}{3}$	ne vectors $\hat{i} - \hat{j}$ and (b) $\frac{2\pi}{3}$	$\hat{j} - \hat{k} \text{ is } $ (c) $\frac{5\pi}{6}$		$(d)\frac{-\pi}{3}$	1
2.	If $P(A \cap B) = \frac{7}{10}$ and	$P(B) = \frac{17}{20}$, then $P(A)$	B) equals		1. 6	1
	(a) $\frac{14}{17}$	(b) $\frac{7}{17}$	(c)	$\frac{17}{20}$	$(d)^{\frac{14}{17}}$	
3.	If A and B are any two (a) $P(B A) = 1$	vo events such that F (b) $P(A B) = 1$	P(A) + P(B) - P(A ar (c) $P(B A)$	d B = P(A) $= 0$), then (d) $P(A B) = 0$	1
4.	$\int_0^{\frac{\pi}{2}} \sqrt{1 + \sin 2x} dx is$	s equal to				1
	(a) $2\sqrt{2}$		(c) 2	(d) 2(v	$\sqrt{2} - 1$)	

- 5. If a matrix A is both symmetric and skew symmetric then matrix A is
 - (a) a scalar matrix
- (b) any zero matrix
- (c) a zero matrix of order $n \times n$
- (d) a rectangular matrix.
- 6. The reflection of the point (α, β, γ) in the xy-plane is
 - (a) $(\alpha, \beta, 0)$

- (b) $(0, 0, \gamma)$
- (c) $(-\alpha, -\beta, \gamma)$
- (d) $(\alpha, \beta, -\gamma)$

1

1

7.	If A is a square matrix.	atrix such that $A^2 =$	A, then write the va	alue of 7A – (I	$(+A)^3$, where I is an ide	ntity 1
	(a)I	(b) A	(c) - A	(d) - I		
8.	The point which l (a) (5,7)	ies in the solution has (b) (1, 2)	alf plane of $2x + 3y$ (c) (2,		(d) (-1, 0)	1
9.	The equation of the $(5, 1, -6)$ is $(a) 4x - 3y + 2z - (c) 3x - 4y + 2z + 2z + 3z - 4y + 2z - 4y + $	- 5 = 0	(b) $3x - 4$		passing through the poir	nt 1
10.	$If \sin^{-1} x + \sin^{-1} y$	$r = \frac{\pi}{2}$, then value of	$\cos^{-1} x + \cos^{-1} y is$			1
•	(a) $\frac{\pi}{2}$ (Q11 - Q15) Fill	(b) π in the blanks.	(c) ²	$\frac{2\pi}{3}$	(d) 0	
11.	$\operatorname{If} \begin{bmatrix} 2x + y & 4x \\ 5x - 7 & 4x \end{bmatrix}$	$= \begin{bmatrix} 7 & 7y - 13 \\ y & x + 6 \end{bmatrix}, \text{ the}$	en value of x is	•		1
12.	The direction cos	ines of Z-axis are	•			1
			OR		•	
13.	The sides of an e	n the direction of the quilateral triangle ar ide is 10 cm is	e increasing at the	rate of 2 cm/se	c. The rate at which the	area 1
14.	The set of points	where the functions	f given by $f(x) = x $	x - 3 is differe	entiable is	. 1
15.	Define a relation	R in R as aRb if a \geq		ivalence relation	on because R is	1
		$f(x) = x^2 defined$ e real numbers. W		there R_+ is th	ne set of all	
	(Q16 - Q20) Ans	swer the following	questions			
16.	Evaluate: $\int_{a}^{-a} (si)^{-a}$	$n^5x)dx$				1
17.	Evaluate: $\int_0^{\frac{\pi}{2}} \frac{1}{\sec x}$	dx				1
18.	- 5002	r of the differential e	equation of all circle OR	es of given rad	ius 5 units?	· 1
	What is the integ	grating factor of the		$\int_{0}^{\infty} x \frac{dy}{dx} - 2y =$	$=e^{2x}$?	

- 19. Evaluate: $\int \frac{dx}{\sin^2 x \cos^2 x}$
- 20. Let A be a square matrix of order 3×3 and k a scalar, then find the value of |kA|.

SECTION - B

1

4

- 21. A die is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?
- 22. Find the value of c in Mean value theorem for the function $f(x) = x(x-2), x \in [1, 2]$
- 23. Find the principal value of $\cos^{-1}\left(\cos\frac{7\pi}{6}\right) + \sin^{-1}\left(\sin\frac{5\pi}{6}\right)$
- 24. Find $\frac{dy}{dx}$, if $y = sin^{-1} \left(\frac{1-x^2}{1+x^2} \right)$, 0 < x < 1
- Differentiate $\log (\cos e^x)$ with respect to e^x . 25. Find the angle between the two planes 3x - 6y + 2z = 7 and 2x + 2y - 2z = 5
- 25. Find the angle between the two planes 3x 6y + 2z = 7 and 2x + 2y 2z = 5
- 26. Find the vector and Cartesian equation of the line through the point (5, 2, -4) and which is parallel to 2 the vector $3\hat{i} + 2\hat{j} 8\hat{k}$.

OR

Show that the points A $(-2\hat{\imath} + 3\hat{\jmath} + 5\hat{k})$, B $(\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$ and C $(7\hat{\imath} - \hat{k})$ are collinear.

SECTION - C

- 27. Evaluate: $\int \frac{6x+7}{\sqrt{(x-5)(x-4)}} dx$
- 28. A dealer wishes to purchase a number of fans and sewing machines. He has only ₹ 5760 to invest 4 and has space for at most 20 items. A fan costs him ₹ 360 and a sewing machine ₹ 240. His expectation is that he can sell a fan at a profit of ₹ 22 and a sewing machine at a profit of ₹ 18. Assuming that he can sell all the items that he can buy, how should he invest his money in order to maximize the profit? Formulate this as a linear programming problem and solve it graphically.
- 29. Let T be the set of all triangles in a plane with R, a relation in T given by $R = \{(T1, T2): T1 \text{ is similar to } T2\}$. Show that R is an equivalence relation. Are the two right angled triangles with sides $T_1: 3, 4, 5$ and $T_2: 1, 1, \sqrt{2}$ related? Justify.
- 30. Find the particular solution of differential equation $(1 + x^2)$ dy +2xy dx = cot x dx, given that y = 1 when $x = \frac{\pi}{2}$.
- 31. There are 2 boxes I and II .Box I contains 3 red and 6 black balls. Box II contains 5 red and 'n' black balls. One of the two boxes, box I and box II is selected at random and a ball is drawn at random. The ball drawn is found to be red. If the probability that this red ball comes out from box II is $\frac{3}{5}$, find the value of 'n'.

OR

From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.

32. If $y = 3 \cos(\log x) + 4 \sin(\log x)$. Show that $x^2y_2 + x^2y_1 + y = 0$

OR

If
$$\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$$
 then prove that $\frac{dy}{dx} = -\frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$

SECTION D

- 33. Show that the lines with vector equations $\vec{r} = \hat{\imath} + \hat{\jmath} + \hat{k} + \mu(\hat{\imath} \hat{\jmath} + \hat{k})$ and $\vec{r} = 4\hat{\jmath} + 2\hat{k} + \beta(2\hat{\imath} \hat{\jmath} + 3\hat{k})$ are coplanar. Also find the equation of the plane containing the lines.
- 34. A given quantity of metal is to be cast into a solid half circular cylinder with a rectangular base and semi-circular ends. Show that in order that total surface area is minimum, the ratio of length of cylinder to the diameter of semi-circular ends is $\pi : \pi + 2$.

OR

6

6

Find the equation of the normal at a point on the curve $x^2 = 4y$ which passes through the point (1, 2). Also find the equation of the corresponding tangent.

- 35. Using integration, find the area of \triangle ABC ,whose vertices are A(2,5) ,B(4,7) and C(6,2)
- 36. If $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix}$. Find A^{-1} , hence solve the system of equations, x + 2z = 7, 3x + y + z = 12 and x + y + z = 6

OR

Find the inverse of the following matrix using column operations

$$A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

End of the Question Paper

INDIAN SCHOOL MUSCAT FIRST PRE-BOARD EXAMINATION MATHEMATICS

CLASS: XII

Subject Code: 041

Time Allotted: 3 Hrs.

1

02.01.2020

Max. Marks: 80

General Instructions:

(i) All the questions are compulsory.

(ii) The question paper consists of 36 questions divided into 4 sections A, B, C, and D.

- (iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
- (iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.

SECTION A

 $\mathbf{Q1}-\mathbf{Q10}$ are multiple choice type questions. Select the correct option.

1.	$\int_0^{\frac{\pi}{2}} \sqrt{1 + \sin 2x} \mathrm{d}x$	x is equal to			1
2.	(a) $2\sqrt{2}$ If $\sin^{-1} x + \sin^{-1} y$	(b) $2(\sqrt{2} + 1)$ = $\frac{\pi}{2}$, then value of co	(c) 2 $\cos^{-1} x + \cos^{-1} y$ is	(d) $2(\sqrt{2}-1)$	1
3.	(a) $\frac{\pi}{2}$ The point which l	(b) π ies in the solution hal	(c) $\frac{2\pi}{3}$ f plane of $2x + 3y \le 6$ is	(d) 0	. 1
	(a) (5,7)	(b) (1, 2)	(c) (2, 1)	(d) (-1, 0)	
	·	4.5			

4. If $P(A \cap B) = \frac{7}{10}$ and $P(B) = \frac{17}{20}$, then P(A|B) equals

(a) $\frac{14}{17}$ (b) $\frac{7}{17}$ (c) $\frac{17}{20}$ (d) $\frac{14}{17}$

5. The angle between the vectors $\hat{i} - \hat{j}$ and $\hat{j} - \hat{k}$ is

(a) $\frac{\pi}{3}$ (b) $\frac{2\pi}{3}$ (c) $\frac{5\pi}{6}$

6.	The equation of the plane parallel to the plane $4x - 3y + 2z + 1 = 0$ and passing through the point $(5, 1, -6)$ is	1
•	(a) $4x - 3y + 2z - 5 = 0$ (b) $3x - 4y + 2z - 5 = 0$ (c) $3x - 4y + 2z + 5 = 0$ (d) $4x - 3y + 2z + 5 = 0$	
7.	If A is a square matrix such that $A^2 = A$, then write the value of $7A - (I + A)^3$, where I is an identity matrix.	1
	(a)I (b) A (c) $-A$ (d) $-I$	
8.	The reflection of the point (α, β, γ) in the xy– plane is (a) $(\alpha, \beta, 0)$ (b) $(0, 0, \gamma)$ (c) $(-\alpha, -\beta, \gamma)$ (d) $(\alpha, \beta, -\gamma)$	1
9.	If A and B are any two events such that $P(A) + P(B) - P(A \text{ and } B) = P(A)$, then (a) $P(B A) = 1$ (b) $P(A B) = 1$ (c) $P(B A) = 0$ (d) $P(A B) = 0$	1
10.	If a matrix A is both symmetric and skew symmetric then matrix A is	1
	(a) a scalar matrix (b) any zero matrix	
	(c) a zero matrix of order $n \times n$ (d) a rectangular matrix.	
11.	(Q11 - Q15) Fill in the blanks. The set of points where the functions f given by $f(x) = x - 3 $ is differentiable is	1
12.	The direction cosines of Z-axis are OR	1
	The unit vector in the direction of the vector $2\hat{\imath} - \hat{\jmath} + 3\hat{k}$ is	
13.	The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at which the area increases, when side is 10 cm is cm ² /s	1
14.	Define a relation R in R as aRb if $a \ge b$. R is not an equivalence relation because R is OR	1
	For the function $f(x) = x^2$ defined from R_+ to R_+ , where R_+ is the set of all non – negative real numbers. What is f^{-1} ?	
15.	If $\begin{bmatrix} 2x + y & 4x \\ 5x - 7 & 4x \end{bmatrix} = \begin{bmatrix} 7 & 7y - 13 \\ y & x + 6 \end{bmatrix}$, then value of x is	1
	(Q16 - Q20) Answer the following questions.	
16.	What is the order of the differential equation of all circles of given radius 5 units? OR	1
	What is the integrating factor of the differential equation $x \frac{dy}{dx} - 2y = e^{2x}$?	

Page **2** of **4**

- 17. Evaluate: $\int \frac{dx}{\sin^2 x \cos^2 x}$
- 18. Let A be a square matrix of order 3×3 and k a scalar, then find the value of |kA|.
- 19. Evaluate: $\int_0^{\frac{\pi}{2}} \frac{1}{\sec x} dx$
- 20. Evaluate: $\int_{a}^{-a} (\sin^5 x) dx$

SECTION - B

- 21. Find the value of c in Mean value theorem for the function $f(x) = x(x-2), x \in [1, 2]$
- 22. Find the vector and Cartesian equation of the line through the point (5, 2, -4) and which is parallel to 2 the vector $3\hat{\imath} + 2\hat{\jmath} 8\hat{k}$.

OR

Show that the points A $(-2\hat{\imath} + 3\hat{\jmath} + 5\hat{k})$, B $(\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$ and C $(7\hat{\imath} - \hat{k})$ are collinear.

- 23. A die is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?
- 24. Find the principal value of $\cos^{-1}\left(\cos\frac{7\pi}{6}\right) + \sin^{-1}\left(\sin\frac{5\pi}{6}\right)$
- 25. Find $\frac{dy}{dx}$, if $y = sin^{-1} \left(\frac{1-x^2}{1+x^2}\right)$, 0 < x < 1OR

 Differentiate log (cos e^x) with respect to e^x.
- 26. Find the angle between the two planes 3x 6y + 2z = 7 and 2x + 2y 2z = 5

SECTION - C

- A dealer wishes to purchase a number of fans and sewing machines. He has only ₹ 5760 to invest 4 and has space for at most 20 items. A fan costs him ₹ 360 and a sewing machine ₹ 240. His expectation is that he can sell a fan at a profit of ₹ 22 and a sewing machine at a profit of ₹ 18. Assuming that he can sell all the items that he can buy, how should he invest his money in order to maximize the profit? Formulate this as a linear programming problem and solve it graphically.
- 28. Evaluate: $\int \frac{6x+7}{\sqrt{(x-5)(x-4)}} dx$
- 29. There are 2 boxes I and II .Box I contains 3 red and 6 black balls. Box II contains 5 red and 'n' 4 black balls. One of the two boxes, box I and box II is selected at random and a ball is drawn at random. The ball drawn is found to be red. If the probability that this red ball comes out from box II is $\frac{3}{r}$, find the value of 'n'.

OR

From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.

- If $y = 3 \cos(\log x) + 4 \sin(\log x)$. Show that $x^2y_2 + xy_1 + y = 0$ 30. If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$ then prove that $\frac{dy}{dx} = -\frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$
- Find the particular solution of differential equation $(1 + x^2)$ dy +2xy dx = cot x dx, given that 31. = 1 when $x = \frac{\pi}{2}$.
- Let T be the set of all triangles in a plane with R, a relation in T given by $R = \{(T1, T2): T1 \text{ is } T\}$ 4 32. similar to T2}. Show that R is an equivalence relation. Are the two right angled triangles with sides $T_1: 3, 4, 5 \text{ and } T_2: 1, 1, \sqrt{2} \text{ related? Justify.}$

SECTION D

A given quantity of metal is to be cast into a solid half circular cylinder with a rectangular base and 6 33. semi-circular ends. Show that in order that total surface area is minimum, the ratio of length of cylinder to the diameter of semi-circular ends is $\pi : \pi + 2$.

Find the equation of the normal at a point on the curve $x^2 = 4y$ which passes through the point (1, 2). Also find the equation of the corresponding tangent.

If A = $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix}$. Find A^{-1} , hence solve the system of equations, x + 2z = 7, 3x + y + z = 12 and x + 2z = 12. 6 34. y + z = 6

Find the inverse of the following matrix using column operations.

$$A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

- $A = \begin{bmatrix} 1 & 2 & 2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ Show that the lines with vector equations $\vec{r} = \hat{\imath} + \hat{\jmath} + \hat{k} + \mu(\hat{\imath} \hat{\jmath} + \hat{k})$ and 6 35. $\vec{r} = 4\hat{j} + 2\hat{k} + \beta(2\hat{i} - \hat{j} + 3\hat{k})$ are coplanar. Also find the equation of the plane containing the lines.
- 6 Using integration, find the area of \triangle ABC, whose vertices are A(2,5),B(4,7) and C(6,2) 36.

End of the Question Paper