



- 1. What is meant by limiting molar conductivity?
- 2. The  $E^{\circ}$  values of Cu and Zn are 0.34V and -0.76V respectively. Which of the two is a stronger reducing agent?
- 3. Calculate the potential of hydrogen electrode in contact with a solution having pH value 10.
- 4. How many Faradays are required to produce 2.4g of Mg?
- 5. How much charge is needed to oxidize one mole of FeO to  $Fe_2O_3$ ?
- 6. Write Nerst equation and calculate the emf of following cell at 298 K:  $Mg_{(s)}|Mg^{2+}_{(0.001 M)}||Cu^{2+}_{(0.0001 M)}|Cu_{(s)}$ . Given  $E^{0}_{cell}=2.71 V$ .
- 7. Define and express the relationship between conductivity and molar conductivity for the solution of an electrolyte.
- 8. Electrolytic specific conductance of 0.25M solution of KCl at  $25^{0}$ C is 2.56 x  $10^{-2}$ S/cm, calculate the molar conductance.
- 9. Describe the reactions which occur at the electrodes in a fuel cell that causes  $H_2$  and  $O_2$  to produce electricity.
- 10 How many hours does it take to reduce 3 moles of  $Fe^{3+}$  to  $Fe^{2+}$  with a current of 2 amperes?
- 11 Account for the following:
  - a) Alkaline medium inhibits the rusting of iron.
  - b) Iron does not rust even if the zinc coating is broken in a galvanized iron pipe.
- 12 Calculate the time to deposit 1.5 g of silver at cathode when a current of 1.5 A was passed through the solution of AgNO<sub>3</sub>. (Molar mass of Ag = 108 g mol<sup>-1</sup>, 1 F = 96500 C mol<sup>-1</sup>)
- 13 Three electrolytic cells A, B, C containing solutions of ZnSO<sub>4</sub>, AgNO<sub>3</sub> and CuSO<sub>4</sub>, respectively are connected in series. A steady current of 1.5 amperes was passed through them until 1.45 g of silver deposited at the cathode of cell B. How long did the current flow? What mass of copper and zinc were deposited?
- 14. Conductivity of 0.00241 M acetic acid is  $7.896 \times 10^{-5} \text{ S cm}^{-1}$ . Calculate its molar conductivity and if  $\lambda^0_m$  for acetic acid is 390.5Scm<sup>2</sup> mol<sup>-1</sup>, what is its dissociation constant?
- 15 Calculate the equilibrium constant and  $\Delta G^0$  for the following reaction at 25°C. Ni(s)+ 2Ag<sup>+</sup>(aq)  $\rightarrow$  Ni<sup>2+</sup>(aq) + 2Ag (s), Given that the cell potential at 25°C is 1.05V. (1F = 96500 C mol<sup>-1</sup>)
- 16 What type of a battery is the lead storage battery? Write the anode and cathode reactions and the overall reaction occurring in a lead storage battery when the cell is in use.

- 17. A conductivity cell with cell constant 3cm<sup>-1</sup> is filled with 0.1M acetic acid solution. The resistance is found to be 4000 ohms. Find a) molar conductance of 0.1M acetic acid b) Degree of dissociation of acetic acid given that  $A^0$  (CHaCOOH) = 400 S cm<sup>2</sup> mol<sup>-1</sup>
  - b] Degree of dissociation of acetic acid given that  $\Lambda^0$  (CH<sub>3</sub>COOH) = 400 S cm<sup>2</sup> mol<sup>-1</sup>.
- 18 a) State Kohlrausch's law of independent migration of ions. Write an expression for the molar conductivity of acetic acid at infinite dilution according to Kohlrausch's law.
  - b) Calculate  $\lambda_m^0$  for acetic acid. Given that  $\lambda_m^0$  (HCl) = 426 Scm<sup>2</sup>mol<sup>-1</sup> and  $\lambda_m^0$  (CH<sub>3</sub>COONa) = 91 Scm<sup>2</sup>mol<sup>-1</sup>
- 19 Calculate E  $_{cell}$  and  $\Delta G$  for the following reaction. Given  $E^0{}_{Cell}$  = 1.81 V

 $Al\!/\!Al^{3+}_{(aq)}(_{10}^{-4}_{M}) ||Sn^{4+}_{(aq)(10}^{-2}_{M})|Sn^{2+}_{(aq)(10}^{-2}_{M})$ 

20 Explain the electrochemical theory of rusting.

\*\*\*\*\*\*