PRACTICE QUESTIONS FOR COMPETITIVE EXAMINATIONS

SUBJECT: MATHEMATICS

TOPIC: COORDINATE GEOMETRY (3 - D)

1. Which one of the following statement is INCORRECT?

- (A) If $\vec{n} \cdot \vec{a} = 0$, $\vec{n} \cdot \vec{b} = 0$ and $\vec{n} \cdot \vec{c} = 0$ for some non zero vector \vec{n} , then $[\vec{a} \ \vec{b} \ \vec{c}] = 0$
- (B) there exist a vector having direction angles $\alpha = 30$ and $\beta = 45$
- (C) locus of point in space for which x = 3 and y = 4 is a line parallel to the z-axis whose distance from the z-axis is 5
- (D) In a regular tetrahedron OABC where 'O' is the origin, the vector $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$ is perpendicular to the plane ABC.

2. Consider the following 5 statements

- (I) There exists a plane containing the points (1, 2, 3) and (2, 3, 4) and perpendicular to the vector $\vec{\nabla}_{\!_1} = \tilde{i} + \tilde{j} \tilde{k}$
- (II) There exist no plane containing the point (1, 0, 0); (0, 1, 0); (0, 0, 1) and (1, 1, 1)
- (III) If a plane with normal vector \vec{N} is perpendicular to a vector \vec{V} then \vec{N} \vec{V} = 0
- (IV) If two planes are perpendicular then every line in one plane is perpendicular to every line on the other plane
- (v) Let P_1 and P_2 are two perpendicular planes. If a third plane P_3 is perpendicular to P_1 then it must be either parallel or perpendicular or at an angle of 45 to P_2 .

Choose the correct alternative.

- (A) exactly one is false
 (B) exactly 2 are false
 (C) exactly 3 are false
 (D) exactly four are false
 If from the point P(f, g, h) perpendiculars PL, PM be drawn to yz and zx planes then the equation to the plane
 - (A) $\frac{x}{f} + \frac{y}{g} + \frac{z}{h} = 0$

OLM is -

(B)
$$\frac{x}{f} + \frac{y}{\sigma} - \frac{z}{h} = 0$$

(C)
$$\frac{x}{f} - \frac{y}{g} + \frac{z}{h} = 0$$

(D)
$$-\frac{x}{f} + \frac{y}{\sigma} + \frac{z}{h} = 0$$

- 4. If the plane 2x 3y + 6z 11 = 0 makes an angle $\sin^{-1}(k)$ with x-axis, then k is equal to -
 - (A) $\frac{\sqrt{3}}{2}$

(B) $\frac{2}{7}$

(C) $\frac{\sqrt{2}}{3}$

(D) 1

5.	The expression in the vector form for the poin	\vec{r}_1 of intersection of the plane \vec{r} \vec{n} = d and the perpendicular
	line $\vec{r} = \vec{r}_0 + t\vec{n}$ where t is a parameter give	n by -
	(A) $\vec{r}_1 = \vec{r}_0 + \left(\frac{d - \vec{r}_0 \cdot \vec{n}}{\vec{n}^2}\right) \vec{n}$	(B) $\vec{r}_1 = \vec{r}_0 - \left(\frac{\vec{r}_0 \cdot \vec{n}}{\vec{n}^2}\right) \vec{n}$
	(C) $\vec{\mathbf{r}}_1 = \vec{\mathbf{r}}_0 - \left(\frac{\vec{\mathbf{r}}_0 \cdot \vec{\mathbf{n}} - \mathbf{d}}{ \vec{\mathbf{n}} }\right) \vec{\mathbf{n}}$	(D) $\vec{\mathbf{r}}_1 = \vec{\mathbf{r}}_0 + \left(\frac{\vec{\mathbf{r}}_0 \cdot \vec{\mathbf{n}}}{ \vec{\mathbf{n}} }\right) \vec{\mathbf{n}}$
6.	If the line $\vec{r} = 2\vec{i} - \vec{j} + 3\vec{k} + \lambda(\vec{i} + \vec{j} + \sqrt{2}\vec{k})$) makes angles $\alpha,\;\beta,\;\gamma$ with xy, yz and zx planes respectively then
	which one of the following are not possible?	(D) $\vec{r}_1 = \vec{r}_0 + \left(\frac{\vec{r}_0}{ \vec{n} }\right)\vec{n}$ kes angles α , β , γ with xy, yz and zx planes respectively then
	(A) $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$ and $\cos^2 \alpha + \cos^2 \beta$	$+\cos^2\gamma = 1$
	(B) $tan^2\alpha + tan^2\beta + tan^2\gamma = 7$ and $cot^2\alpha + cot^2$	$3 + \cot^2 \gamma = 5/3$

Points that lie on the lines bisecting the angle between the lines $\frac{x-2}{2} = \frac{y-3}{3} = \frac{z-6}{6}$ and $\frac{x-2}{3} = \frac{y-3}{6} = \frac{z-6}{2}$

(A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.(B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I.

Statement - I: If a plane contains point $A(\vec{a})$ and is parallel to vectors \vec{b} and \vec{c} , then its vector equation

Statement - II : If three vectors are co-planar, then any one can be expressed as the linear combination

Statement - I : If ax + by + cz = $\sqrt{a^2 + b^2 + c^2}$ be a plane and (x_1, y_1, z_1) and (x_2, y_2, z_2) be two points

Statement - II : If two vectors $p_1 \tilde{i} + p_2 \tilde{j} + p_3 \tilde{k}$ and $q_1 \tilde{i} + q_2 \tilde{j} + p_3 \tilde{k}$ are orthogonal then

(C) C

(D) D

(C) (1, 0, 10)

(D) (-3, -6, -2)

(C) $\sin^2\alpha + \sin^2\beta + \sin^2\gamma = 1$ and $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 2$

(C) Statement-I is true, Statement-II is false.(D) Statement-I is false, Statement-II is true.

is $\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}$, where $\lambda \& \mu$ are parameters and $\vec{b} \backslash \!\! / \vec{c}$.

on this plane then $a(x_1 - x_2) + b(y_1 - y_2) + c(z_1 - z_2) = 0$.

(B) B

7.

8.

9.

are -

Because

(A) A

Because

(A) A

 $p_1^{}q_1^{} + p_2^{}q_2^{} + p_3^{}q_3^{} = 0.$

of other two.

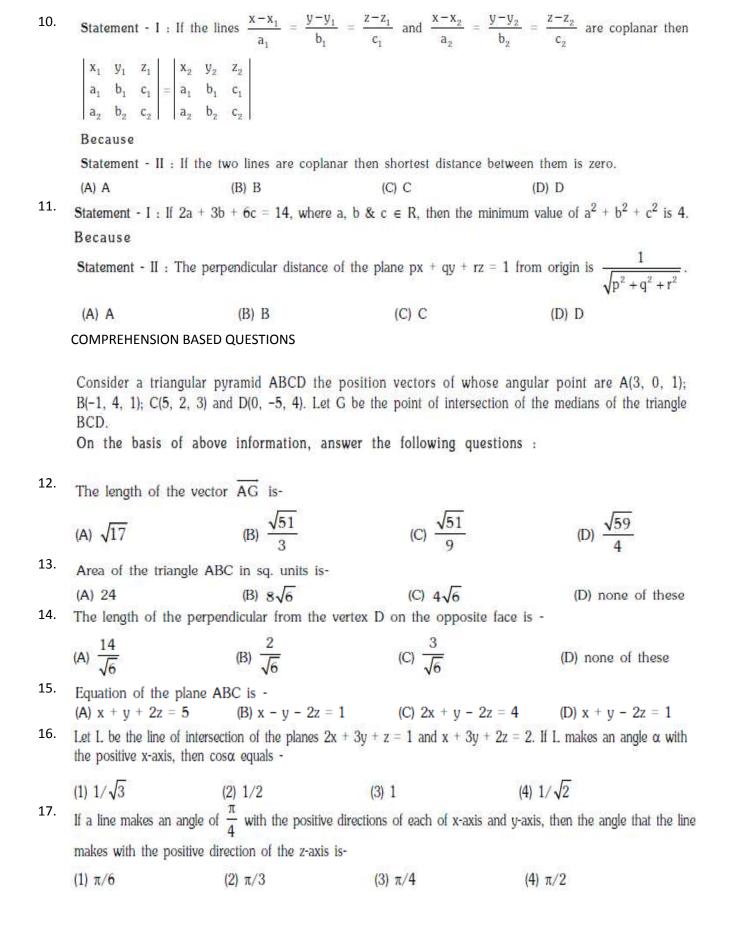
(A) (7, 12, 14)

ASSERTION & REASON

(D) $\sec^2\alpha + \sec^2\beta + \sec^2\gamma = 10$ and $\csc^2\alpha + \csc^2\beta + \csc^2\gamma = 14/3$

(B) (0, -3, 14)

These questions contains, Statement I (assertion) and Statement II (reason).



If (2, 3, 5) is one end of a diameter of the sphere $x^2 + y^2 + z^2 - 6x - 12y - 2z + 20 = 0$, then the coordinates 18. of the other end of the diameter are-

(1) (4, 9, -3)

(2) (4, -3, 3)

(3) (4, 3, 5)

(4) (4, 3, -3)

19. The line passing through the points (5, 1, a) and (3, b, 1) crosses the yz-plane at the point $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$. Then-

(1) a = 2, b = 8 (2) a = 4, b = 6 (3) a = 6, b = 4 (4) a = 8, b = 2

If the straight lines $\frac{x-1}{k} = \frac{y-2}{2} = \frac{z-3}{3}$ and $\frac{x-2}{3} = \frac{y-3}{k} = \frac{z-1}{2}$ intersect at a point, then the integer k is 20. equal to-

(1) -5

(2) 5

(3) 2

(4) -2

ANSWERS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
В	D	В	В	Α	ABD	ВС	С	Α	С	Α	В	С	Α	D	1	4	1	3	1