

SECTION A: (1 MARK)

	в	Y	в	× P	
4.	In the given figures, BD and YE are the medians. Fig1 Find the value of YZ.(State the reasons)				5cm
3.	In the given fig 1, Mention the congruency rule used in proving $\Delta ACB\cong \Delta ACD$				SAS ≅ RIII F
2.	In $\triangle ABC$, $\angle A = 100^\circ$, $\angle B = 30^\circ$ and $\angle C = 50^\circ$. Write the inequality relation between sides AB and AC. Justify it.				50
1.	In $\triangle PQR$ if $\angle QPR =$	80° and PQ = PR, find \angle	R and ∠Q	(CCE 2010)	50°,

SECTION B: (2 MARKS)

- 5. Line segments AB and CD intersect at M. If AC || DB and M is midpoint of AB. Prove that M is midpoint of CD. (CCE 2010)
- 6. In the given figure, RV = VT, QV = VU, $VR \perp SQ$ and $VT \perp SU$. Prove that SQ = SU.

- 7. In Δ PSR, Q is a point on SR such that PQ = PR, show that PS > PQ.
- 8. In fig2, AB =PQ, $\angle A = \angle P$ and $\angle ACD = \angle PRS$. Prove that $\triangle ABC \cong \triangle PQR$.
- 9. In $\triangle ABC$, AD is the bisector of $\angle BAC$. Prove that AB > BD.

SECTION C: (3 MARKS)

- 10. ABCD is a square. X and Y are points on the sides AD and BC such that AY = BX. Prove that $\angle XAY = \angle YBX$. (CCE 2013)
- **11.** In fig 3., AD = BC and BD = AC , prove that $\angle DAB = \angle CBA$ (CCE 2014)
- **12.** In fig4., $| \parallel m$ and $p \parallel q$. Show that $\triangle ABC \cong \triangle CDA$.
- **13.** In fig.5, $\angle 1 = \angle 2$, $\angle 3 = \angle 4$. Prove that BC = CD.

SECTION D: (4 MARKS)

- **15.** ABC is a triangle and D is the midpoint of BC. The perpendiculars from D to AB and
AC are equal. Prove that triangle is isosceles.(CCE 2013)
- **16.** Two sides AB and BC and median AM of \triangle ABC are respectively equal to sides PQ, QR and median PN of \triangle PQR then prove that \triangle ABC $\cong \triangle$ PQR.
- **17.** In the given figure, AD and CE are the bisectors of $\angle A$ and $\angle C$ respectively. If $\angle ABC = 90^{\circ}$, find $\angle ADC + \angle AEC$. (CCE 2015)

- 18. Show that in a quadrilateral ABCD, AB + BC + CD + DA < 2 (BD + AC)
- **19.** ABC is a triangle in which AB = AC. X and Y are points on AB and AC such that AX = AY. Prove that $\triangle ABY \cong \triangle ACX$ (CBSE 2011)
- **20.** ABC is a triangle in which D is point on AC and E on AB such that AD = EC = ED = BC. Prove that $\angle A : \angle B = 1:3$ (CBSE 2015)