INDIAN SCHOOL MUSCAT
SENIOR SECTION
DEPARTMENT OF MATHEMATICS
CLASS IX
WORKSHEET NO. 5

Lets CELEBPATE
OUR FOUNOATON, OUR IDENTITY

TRIANGLES

SECTION A: (1 MARK)

1. In $\triangle P Q R$ if $\angle \mathrm{QPR}=80^{\circ}$ and $\mathrm{PQ}=\mathrm{PR}$, find $\angle \mathrm{R}$ and $\angle \mathrm{Q}$
(CCE 2010) 50°,
50°
2. In $\triangle \mathrm{ABC}, \angle \mathrm{A}=100^{\circ}, \angle \mathrm{B}=30^{\circ}$ and $\angle \mathrm{C}=50^{\circ}$. Write the inequality relation between sides AB and AC . Justify it.
3. In the given fig 1, Mention the congruency rule used in proving $\triangle A C B \cong \triangle A C D$

SECTION B: (2 MARKS)

5. Line segments $A B$ and $C D$ intersect at M. If $A C \| D B$ and M is midpoint of $A B$. Prove that M is midpoint of $C D$.
(CCE 2010)
6. In the given figure, $\mathrm{RV}=\mathrm{VT}, \mathrm{QV}=\mathrm{VU}, \mathrm{VR} \perp \mathrm{SQ}$ and $\mathrm{VT} \perp \mathrm{SU}$. Prove that $\mathrm{SQ}=\mathrm{SU}$.

Fig 2.
7. In $\triangle P S R, Q$ is a point on $S R$ such that $P Q=P R$, show that $P S>P Q$.
8. In fig2, $A B=P Q, \angle A=\angle P$ and $\angle A C D=\angle P R S$. Prove that $\triangle A B C \cong \triangle P Q R$.
9. In $\triangle A B C, A D$ is the bisector of $\angle B A C$. Prove that $A B>B D$.
10. $A B C D$ is a square. X and Y are points on the sides $A D$ and $B C$ such that $A Y=B X$. Prove that $\angle X A Y=\angle Y B X$.
11. In fig 3., $\mathrm{AD}=\mathrm{BC}$ and $\mathrm{BD}=\mathrm{AC}$, prove that $\angle \mathrm{DAB}=\angle \mathrm{CBA}$
12. In fig4., $\|\| m$ and $p\| q$. Show that $\triangle A B C \cong \triangle C D A$.
13. In fig. $5, \angle 1=\angle 2, \angle 3=\angle 4$. Prove that $\mathrm{BC}=\mathrm{CD}$.

Fig 5.

14.

In the given fig, $\triangle A B C$ and $\triangle D B C$ are two isosceles triangle on the same base $B C$. If $\angle B D C=120^{\circ}$ and $\angle A B D=40^{\circ}$, then find $\angle B A C$ and $\angle \mathrm{ADC}$. (CCE 2010)

Ans: $40^{\circ}, 120^{\circ}$

SECTION D: (4 MARKS)

15. $A B C$ is a triangle and D is the midpoint of $B C$. The perpendiculars from D to $A B$ and $A C$ are equal. Prove that triangle is isosceles.
(CCE 2013)
16. Two sides $A B$ and $B C$ and median $A M$ of $\triangle A B C$ are respectively equal to sides $P Q, Q R$ and median $P N$ of $\triangle P Q R$ then prove that $\triangle A B C \cong \triangle P Q R$.
17. In the given figure, AD and CE are the bisectors of $\angle A$ and $\angle C$ respectively. If $\angle A B C=90^{\circ}$, find $\angle \mathrm{ADC}+\angle \mathrm{AEC}$.

18. Show that in a quadrilateral $A B C D, A B+B C+C D+D A<2(B D+A C)$
19. $A B C$ is a triangle in which $A B=A C . X$ and Y are points on $A B$ and $A C$ such that $A X=A Y$. Prove that $\triangle A B Y \cong \triangle A C X$
(CBSE 2011)
20. $A B C$ is a triangle in which D is point on $A C$ and E on $A B$ such that $A D=E C=E D=B C$.

Prove that $\angle \mathrm{A}: \angle \mathrm{B}=1: 3$
(CBSE 2015)

