INDIAN SCHOOL MUSCAT
 SENIOR SECTION
 DEPARTMENT OF MATHEMATICS
 CLASS IX
 WORKSHEET No. 11
 CIRCLES

Section A (1 mark each)

1. $A D$ is the diameter of a circle of radius 17 cm and $A B$ is of length 30 cm . Find the distance of $A B$ from the centre.
(CBSE 2010)
2. In fig1, $\angle \mathrm{OAB}=35^{\circ}$, find $\angle \mathrm{ACB}$
(NCERT EXPEMPLAR)
3. In fig2, $B C$ is the diameter of the circle and $\angle B A O=60^{\circ}$. Find $\angle A D C$.

Section B (2 marks each)
4. In fig3, O is the centre of a circle. Determine (i) $\angle \mathrm{AEC}$ (ii) reflex $\angle \mathrm{AOC}$
5. In fig4, O is the centre of the circle. $\angle \mathrm{OAB}=20^{\circ}, \angle \mathrm{OCB}=55^{\circ}$. Find $\angle \mathrm{BOC}$ and $\angle \mathrm{AOC}$
6. In fig5, O is the centre of the circle. Prove that $\angle X O Z=2(\angle X Z Y+\angle Y X Z)$
(CBSE 2010)

Section C(3 marks each)

7. In fig6, PQ is a diameter of a circle with centre 0 . If $\angle \mathrm{PQR}=65^{\circ} \angle \mathrm{SPR}=40^{\circ}$, find $\angle \mathrm{QPR}, \angle \mathrm{PRS}$ and $\angle \mathrm{SOR}$.
$\left(25^{0}, 25^{0}\right.$, 80°)

8. $A B$ and $C D$ are two parallel chords of a circle, which is on opposite sides of the centre, such that $A B=10 \mathrm{~cm}$ and $C D=24 \mathrm{~cm}$ and the distance between the chords is 17 cm . find the radius of the
9. Two equal chords $A B$ and $C D$ of a circle with centre O, when produced meet at a point E as shown in fig 7 . Prove that $B E=D E$ and $A E=C E$.

Section D (4 marks each)

10. In a circle of radius $5 \mathrm{~cm}, A B$ and $A C$ are two chords such that $A B=A C=6 \mathrm{~cm}$. Find the length of the chord $B C$.
(CBSE 2014)
11. If $B C$ is a diameter of a circle of centre O and $O D$ is perpendicular to the chord $A B$ of a circle, show that $C A=2 O D$
12. $A B$ and $C D$ are two chords of a circle of radius r such that $A B=2 A C$. If p and q are distances of $A B$ and $A C$ from the centre, show that $p^{2}+3 r^{2}=4 q^{2}$.
(CBSE 2015)
